Skip to main content

Future Prospects and Challenges

  • Chapter
  • First Online:
The Mungbean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Legume crops play a key role for producing proteins for human and animal nutrition. Sustainable increase of plant protein production is essential to satisfy the rising demand of a growing world population. Breeding varieties with high and stable yields and with optimized nutritional value, which at the same time require less input in terms of energy and labor is one of the pathways for sustainable rise of mungbean productivity. Mungbean is mainly used in rotation with cereals. Therefore, producing an economically viable harvest in the short time window between two main crops, often under stressful conditions of a hot and dry season, is an important breeding aim for this crop. Breeding improved varieties requires access to the genetic diversity of the crop and crop wild relatives to source new traits. As natural plant populations are endangered by loss of habitats and climate change, ex situ collections have gained increased importance to conserve biodiversity for crop improvement. Effective screening methods for desired agronomical traits, including biotic and abiotic stress tolerances and pre-breeding technologies to introgress new traits from non-adapted materials into elite lines are facilitating breeding efforts. Often new traits have to be sourced from wild relatives. Crossing barriers between different Vigna species and the need of technologies to restore fertility add additional complexity when traits have to be sourced from wild species. Genomics methods such as quantitative trait mapping or pangenomics studies elucidate the genetic basis of traits of interest, and marker assisted or genomic selection are guiding breeding efforts. Well-coordinated phenotyping efforts to collect and analyze crop performance data across multiple locations are essential for effective breeding of a more productive, nutritious and resilient mungbean crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62(3):1321–1330

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper. FAO, Rome

    Google Scholar 

  • Barkley NA, Wang ML, Gillaspie AG, Dean RE, Pederson GA, Jenkins TM (2008) Discovering and verifying DNA polymorphisms in a mung bean [V. radiata (L.) R. Wilczek] collection by EcoTILLING and sequencing. BMC Res Notes 1:28. https://doi.org/10.1186/1756-0500-1-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer PE, Ruperao P, Mason AS, Stiller J, Chan CK, Hayashi S et al (2015) High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theor Appl Genet 128:1039–1048. https://doi.org/10.1007/s00122-015-2488-y

    Article  PubMed  Google Scholar 

  • Bisht IS, Mahajan RK, Patel DP (1998) The use of characterisation data to establish the Indian mungbean core collection and assessment of genetic diversity. Genet Resour Crop Ev 45:127–133

    Article  Google Scholar 

  • Bushby H, Lawn R (1992) Accumulation and partitioning of nitrogen and dry matter by contrasting genotypes of mungbean (Vigna radiata (L.) Wilczek). Aust J Agric Res 43:1609–1628

    Article  CAS  Google Scholar 

  • Carberry P, Muchow R, Williams R, Sturtz J, McCown R (1992) A simulation model of kenaf for assisting fibre industry planning in northern Australia. I. General introduction and phenological model. Aust J Agric Res 43:1501–1513

    Article  Google Scholar 

  • Chauhan Y, Williams R (2018) Physiological and agronomic strategies to increase mungbean yield in climatically variable environments of Northern Australia. Agronomy 8(6):83

    Article  CAS  Google Scholar 

  • Chauhan Y, Rachaputi RC (2014) Defining agro-ecological regions for field crops in variable target production environments: a case study on mungbean in the northern grains region of Australia. Agric Forest Meteorol 194:207–217

    Article  Google Scholar 

  • Chen J, Somta P, Chen X, Cui X, Yuan X, Srinives P (2016) Gene mapping of a mutant mungbean (Vigna radiata L.) using new molecular markers suggests a gene encoding a yuc4-like protein regulates the chasmogamous flower trait. Front plant Sci 7:830

    PubMed  PubMed Central  Google Scholar 

  • Chhabra KS, Kooner BS (1985) Problem of flower shedding caused by thrips, Megalurothrips distalis (Karny), on summer mungbean, Vigna radiata (L.) Wilczek, and its control. Int J Pest Manag 31(3):186–188

    Google Scholar 

  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975

    Article  CAS  PubMed  Google Scholar 

  • Dıaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 7:e33234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141(3):1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golicz AA, Bayer PE, Edwards D (2015) Skim-based genotyping by sequencing. InPlant genotyping. Humana Press, New York, NY, pp 257–270

    Google Scholar 

  • Hamid A, Agata W, Kawamitsu Y (1990) Photosynthesis, transpiration and water use efficiency in four cultivars of mungbean, Vigna radiata (L.) Wilczek. Photosynthetica 24(1):96–101

    Google Scholar 

  • Hanumantha Rao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–2

    Article  CAS  Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5(5443):6443

    Google Scholar 

  • Kayani AK, Qureshi S, Kayani WK, Qureshi R, Waheed A, Arshad M, Gulfraz M, Laghai MK (2010) Assessment of wheat yield potential after cropping mungbean (Vigna radiata (L.) Wilczek). Pak J Bot 42(3):1535–1541

    Google Scholar 

  • Khan S, Goyal S (2009) Mutation genetic studies in mungbean IV. Selection of early maturing mutants. Thai J Agri Sci 42(2):109–113

    Google Scholar 

  • Khattak GS, Ashraf M, Elahi T, Abbas G (2003) Selection for large seed size at the seedling stage in mungbean (Vigna radiata (L.) Wilczek). Breed Sci 53(2):141–143

    Article  Google Scholar 

  • Kitamura K, Ishimoto M, Sawa M (1988) Inheritance of resistance to infestation with azuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Japanese J Breed 38(4):459–464

    Article  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL, Li MW et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Latati M, Bargaz A, Belarbi B, Lazali M, Benlahrech S, Tellah S (2016) The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur J Agron 72:80–90

    Article  CAS  Google Scholar 

  • Lee YS, Lee JY, Kim DK, Yoon CY, Bak GC, Park IJ, Bang GP, Moon JK, Oh YJ, Min KS (2004) A new high-yielding mungbean cultivar, “Samgang” with lobed leaflet. Kor Breed J 36:183–184

    Google Scholar 

  • Li Y-H, Zhou G, Ma J, Jiang W, Jin L-G, Zhang Z et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotech 32:1045–1052

    Article  CAS  Google Scholar 

  • Liu C, Wang S, Wang L, Sun L, Mei L, Xu N, Cheng X (2008) Establishment of candidate core collection in Chinese mungbean germplasm resources. Acta Agron Sin 34:700

    Article  CAS  Google Scholar 

  • Liu MS, Kuo TC, Ko CY, Wu DC, Li KY, Lin WJ, Lin CP, Wang YW, Schafleitner R, Lo HF, Chen CY (2016) Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol 16(1):46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P, Berkman PJ, Lai K, Batley J, Edwards D (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology 1(2):370–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariyammal I, Seram D, Samyuktha SM, Karthikeyan A, Dhasarathan M, Murukarthick J, Kennedy JS, Malarvizhi D, Yang TJ, Pandiyan M, Senthil N (2019) QTL mapping in Vigna radiata × Vigna umbellata population uncovers major genomic regions associated with bruchid resistance. Mol Breed 39:110

    Article  CAS  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88(21):9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moe KT, Gwag JG, Park YJ (2012) Efficiency of PowerCore in core set development using amplified fragment length polymorphic markers in mungbean. Plant Breed 131:110–117

    Article  CAS  Google Scholar 

  • Nair RM, Yang RY, Easdown WJ, Thavarajah D, Thavarajah P, Hughes JD, Keatinge JD (2013) Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J Sci Food Agri 93(8):1805–1813

    Article  CAS  Google Scholar 

  • Nakhlawy FS, Ismail SM, Basahi JM (2018) Optimizing mungbean productivity and irrigation water use efficiency through the use of low water-consumption during plant growth stages. Legume Res. https://doi.org/10.18805/lr.v40i04.9014

    Article  Google Scholar 

  • Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG (2018) Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci 8:2102

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandiyan M, Senthil N, Ramamoorthi N, Muthiah AR, Tomooka N, Duncan V, Jayaraj T (2010) Interspecific hybridization of Vigna radiata x 13 wild Vigna species for developing MYMV donor. Elect J Plant Breed 1(4):600–610

    Google Scholar 

  • Pannu RK, Singh DP (1993) Effect of irrigation on water use, water-use efficiency, growth and yield of mungbean. Field Crops Res 31(1–2):87–100

    Article  Google Scholar 

  • Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B, Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotech J 13(4):565–577

    Article  CAS  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2001) Development of a set of Triticum aestivum-Aegilops tauschii introgression lines. Hereditas 135(2–3):139–143

    CAS  PubMed  Google Scholar 

  • Ramanujam S, Tiwari AS, Mehra RB (1974) Genetic divergence and hybrid performance in mung bean. Theor App Genet 45(5):211–214

    Article  CAS  Google Scholar 

  • Rang FJ, Kloosterman WP, de Ridder J (2018) From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol 19(1):90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rashid A, Harris D, Hollington PA, Rafiq M (2004) Improving the yield of mungbean (Vigna radiata) in the North West Frontier Province of Pakistan using on-farm seed priming. Exp Agri 40(2):233–244

    Article  Google Scholar 

  • Robertson MJ, Fukai S, Peoples MB (2004) The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mungbean. Field Crops Res 86:67–80

    Article  Google Scholar 

  • Salunkhe DK, Kadam SS, Chavan JK (1985) Post-harvest biotechnology of food legumes. CRC Press, Boca Raton, FL, p 160

    Google Scholar 

  • Saxena KB, Sameer Kumar CV, Saxena RK, Vijay Kumar R, Singh IP, Hingane AJ, Mula MG, Patil SB, Varshney RK (2016) Hybrid pigeonpea: accomplishments and challenges for the next decade. Legume Persp 11:30–32

    Google Scholar 

  • Schafleitner R, Nair RM, Rathore A, Wang YW, Lin CY, Chu SH, Lin PY, Chang JC, Ebert AW (2015) The AVRDC–the world vegetable center mungbean (Vigna radiata) core and mini core collections. BMC Genom 16(1):344

    Article  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotech J14(11):2110–2119

    Article  CAS  Google Scholar 

  • Singh D, Singh B (2011) Breeding for tolerance to abiotic stresses in mungbean. J Food Legumes 24:83–90

    Google Scholar 

  • Sorajjapinun W, Srinives P (2011) Chasmogamous mutant, a novel character enabling commercial hybrid seed production in mungbean. Euphytica 181:217–222

    Article  Google Scholar 

  • Srivastava AC, Pal M, Das M, Sengupta UK (2001) Growth, CO2 exchange rate and dry matter partitioning in mungbean (Vigna radiata L.) grown under elevated CO2. Indian J Exp Bio 39:572–577

    CAS  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Tech Agri 4(1):2

    Article  Google Scholar 

  • Summerfield R, Lawn R (1987) Environmental modulation of flowering in mung bean (Vigna radiata): a reappraisal. Exp Agric 23:461–470

    Article  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2018) Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor App Genet. https://doi.org/10.1007/s00122-018-3252-x

    Article  Google Scholar 

  • Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B (2018) GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 9:771. https://doi.org/10.3389/fmicb.2018.00771

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HL, Le DO, Hui WA, Liu CL, Fang LI, Xie CX (2018) A simple way to visualize detailed phylogenetic tree of huge genome-wide SNP data constructed by SNPhylo. J Integ Agri 17(9):1972–1978

    Article  Google Scholar 

  • Zekic T, Holley G, Stoye J (2018) Pan-genome storage and analysis techniques. Comparative genomics. Humana Press, New York, NY, pp 29–53

    Chapter  Google Scholar 

  • Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50(2):278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schafleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schafleitner, R., Nair, R.M. (2020). Future Prospects and Challenges. In: Nair, R., Schafleitner, R., Lee, SH. (eds) The Mungbean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-20008-4_12

Download citation

Publish with us

Policies and ethics