Skip to main content

Sophisticated Biocomposite Scaffolds from Renewable Biomaterials for Bone Tissue Engineering

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

Tissue engineering, which has gained importance since the early 1990s and has not reached the desired level yet, is one of the most studied biological fields today. One of the reasons why the tissue engineering could not efficiently be practiced in the human clinics is the limitation of non-immunogenic, biocompatible, cost-effective, and stable materials. In this chapter, authors have focused on the availability of biomaterials, which are potentially usable in bone tissue engineering, from various waste or biological structures. Collagen, keratin, and hydroxyapatite are the main theme of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Black CRM, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo ROC. Bone tissue engineering. Curr Mol Biol Rep. 2015;1:132–40.

    PubMed  PubMed Central  Google Scholar 

  2. Healy K, Guldberg RE. Bone tissue engineering. J Musculoskelet Neuronal Interact. 2007;7:328–30.

    CAS  PubMed  Google Scholar 

  3. Siddappa R, Licht R, Blitterswijk C, Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. Orthop Res Soc. 2007;28:1029–41.

    Google Scholar 

  4. Chen Q, Roether JA, Boccaccini A. Tissue engineering scaffolds from bioactive glass and composite materials. In: Ashammakhi N, Reis R, Chiellini F, editors. Topics in tissue engineering. Chapter 6, vol. 4. Oulu: Oulu University; 2008. p. 1–27. www.oulu.fi/spareparts/ebook_topics_in_t_e_vol4/abstracts/q_chen.pdf Accessed 8 Dec 2017.

    Google Scholar 

  5. Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.

    CAS  Google Scholar 

  6. Messina PV, D’Elía NL, Benedini LA. Bone tissue regenerative medicine via bioactive nanomaterials. In: Ficai D, Grumezescu A, editors. Nanostructures for novel therapy. Amsterdam: Elsevier Inc.; 2017. p. 769–92.

    Google Scholar 

  7. Venkatesan J, Lowe B, Kim SK. Bone tissue engineering using functional marine biomaterials. In: Kim SW, editor. Functional marine biomaterials. Cambridge: Woodhead Publishing; 2015. p. 53–61.

    Google Scholar 

  8. Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 2017;63:1–17.

    CAS  PubMed  Google Scholar 

  9. Baldwin J, Henkel J, Hutmacher DW. Engineering the organ bone. In: Ducheyne P, editor. Comprehensive Biomaterials II. Philadelphia, PA: Elsevier; 2017. p. 54–74.

    Google Scholar 

  10. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92–102.

    CAS  PubMed  Google Scholar 

  11. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18–25.

    CAS  Google Scholar 

  13. Du C, Jin J, Li Y, Kong X, Wei K, Yao J. Novel silk fibroin/hydroxyapatite composite films: structure and properties. Mater Sci Eng C. 2009;29:62–8.

    Google Scholar 

  14. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol. 2010;47(1):1–4.

    CAS  PubMed  Google Scholar 

  15. Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans A Math Phys Eng Sci. 2010;368(1917):2065–81.

    CAS  PubMed  Google Scholar 

  16. Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, Fatahi Y, Kaplan DL. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv. 2018;36(1):68–91.

    CAS  PubMed  Google Scholar 

  17. Arslan YE, Sezgin Arslan T, Derkus B, Emregul E, Emregul KC. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products. Colloids Surf B Biointerfaces. 2017;154:160–70.

    CAS  PubMed  Google Scholar 

  18. Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells. 2014;6:144–52.

    PubMed  PubMed Central  Google Scholar 

  19. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.

    CAS  PubMed  Google Scholar 

  20. Batioglu-Karaaltin A, Karaaltin MV, Ovali E, Yigit O, Kongur M, Inan O, Bozkurt E, Cansiz H. In vivo tissue-engineered allogenic trachea transplantation in rabbits: a preliminary report. Stem Cell Rev Rep. 2015;11:347–56.

    CAS  PubMed  Google Scholar 

  21. Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007;28:5068–73.

    CAS  PubMed  Google Scholar 

  22. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:467–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Arslan YE, Hiz MM, Sezgin Arslan T. The use of decellularized animal tissues in regenerative therapies. Kafkas Univ Vet Fak Derg. 2015;21:139–45.

    Google Scholar 

  24. Erten E, Arslan Sezgin T, Derkus B, Arslan YE. Detergent-free decellularization of bovine costal cartilage for chondrogenic differentiation of human adipose mesenchymal stem cells in vitro. RSC Adv. 2016;6:94236–46.

    CAS  Google Scholar 

  25. Tan L, Yu X, Wan P, Yang K. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013;29:503–13.

    CAS  Google Scholar 

  26. Burnett LR, Rahmany MB, Richter JR, Aboushwareb TA, Eberli D, Ward CL, Orlando G, Hantgan RR, Van Dyke ME. Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials. 2013;34:2632–40.

    CAS  PubMed  Google Scholar 

  27. Brien FJO. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011;14:2345–7.

    Google Scholar 

  28. Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006;27:2951–61.

    CAS  PubMed  Google Scholar 

  29. Kim BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaike T, Cho CS. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci. 2011;36:238–68.

    CAS  Google Scholar 

  30. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221:1–22.

    CAS  PubMed  Google Scholar 

  31. Derkus B, Arslan YE, Emregul KC, Emregul E. Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic. Talanta. 2016;158:100–9.

    CAS  PubMed  Google Scholar 

  32. Tachibana A, Kaneko S, Tanabe T, Yamauchi K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials. 2005;26:297–302.

    CAS  PubMed  Google Scholar 

  33. Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M, Tanihara M. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A. 2003;65:283–9.

    PubMed  Google Scholar 

  34. Oliveira AL, Malafaya PB, Reis RL. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials. 2003;24:2575–84.

    CAS  PubMed  Google Scholar 

  35. Ren L, Tsuru K, Hayakawa S, Osaka A. Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–73.

    CAS  PubMed  Google Scholar 

  36. Tian B, Chen W, Dong Y, Marymont JV, Lei Y, Ke Q, Guo Y, Zhu Z. Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv. 2016;6:8549–62.

    CAS  Google Scholar 

  37. Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ. Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Mater Lett. 2009;63:2100–2.

    CAS  Google Scholar 

  38. Rocha JHG, Lemos AF, Agathopoulos S, Valério P, Kannan S, Oktar FN, Ferreira JMF. Scaffolds for bone restoration from cuttlefish. Bone. 2005;37:850–7.

    CAS  PubMed  Google Scholar 

  39. Komalakrishna H, Shine Jyoth T, Kundu B, Mandal S. Low temperature development of nano-hydroxyapatite from austromegabalanus psittacus, star fish and sea urchin. Mater Today Proc. 2017;4:11933–8.

    Google Scholar 

  40. Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW, Toque JA. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater Sci Eng C. 2009;29:1674–80.

    CAS  Google Scholar 

  41. Murugan R, Ramakrishna S. Porous bovine hydroxyapatite for drug delivery. J Appl Biomater Biomech. 2005;3:93–7.

    CAS  PubMed  Google Scholar 

  42. Rivera EM, Araiza M, Brostow W, Castaño VM, Dı́az-Estrada J, Hernández R, Rodrı́guez JR. Synthesis of hydroxyapatite from eggshells. Mater Lett. 1999;41:128–34.

    CAS  Google Scholar 

  43. Dupoirieux L. Ostrich eggshell as a bone substitute: a preliminary report of its biological behaviour in animals - a possibility in facial reconstructive surgery. Br J Oral Maxillofac Surg. 1999;37:467–71.

    CAS  PubMed  Google Scholar 

  44. Reichl S, Borrelli M, Geerling G. Keratin films for ocular surface reconstruction. Biomaterials. 2011;32:3375–86.

    CAS  PubMed  Google Scholar 

  45. Saravanan S, Sameera DK, Moorthi A, Selvamurugan N. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol. 2013;62:481–6.

    CAS  PubMed  Google Scholar 

  46. Fraser RD, Parry DA. Molecular packing in the feather keratin filament. J Struct Biol. 2008;162:1–13.

    CAS  PubMed  Google Scholar 

  47. Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K. Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol. 2002;93:165–70.

    CAS  PubMed  Google Scholar 

  48. Holkar CR, Jain SS, Jadhav AJ, Pinjari DV. Valorization of keratin based waste. Process Saf Environ Prot. 2017;115:85–98. www.sciencedirect.com/science/article/pii/S0957582017303002 Accessed 8 Dec 2017

    Google Scholar 

  49. Fujii T, Murai S, Ohkawa K, Hirai T. Effects of human hair and nail proteins and their films on rat mast cells. J Mater Sci Mater Med. 2008;19:2335–42.

    CAS  PubMed  Google Scholar 

  50. Wrześniewska-Tosik K, Adamiec J. Biocomposites with a content of keratin from chicken feathers. Fibres Text East Eur. 2007;15:106–12.

    Google Scholar 

  51. Verma V, Verma P, Ray P, Ray AR. Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater. 2008;3:25007.

    Google Scholar 

  52. Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee LS, Hwang YS. Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med. 2014;11:255–65.

    CAS  Google Scholar 

  53. Ramshaw JA. Biomedical applications of collagens. J Biomed Mater Res Part B Appl Biomater. 2016;104:665–75.

    CAS  Google Scholar 

  54. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci. 1989;86:933–7.

    CAS  PubMed  Google Scholar 

  55. Maeda M, Tani S, Sano A, Fujioka K. Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Control Release. 1999;62:313–24.

    CAS  PubMed  Google Scholar 

  56. Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, Klinger M, Notbohm H, Gelinsky M. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater. 2014;10:883–92.

    CAS  PubMed  Google Scholar 

  57. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–27.

    CAS  Google Scholar 

  58. Heinemann S, Ehrlich H, Douglas T, Heinemann C, Worch H, Schatton W, Hanke T. Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis nardo. Biomacromolecules. 2007;8:3452–7.

    CAS  PubMed  Google Scholar 

  59. Wang L, An X, Xin Z, Zhao L, Hu Q. Isolation and characterization of collagen from the skin of deep-sea redfish (Sebastes mentella). J Food Sci E Food Eng Phys Prop. 2007;72:450–5.

    Google Scholar 

  60. Nomura Y, Yamano M, Hayakawa C, Ishii Y, Shirai K. Structural property and in vitro self-assembly of shark type i collagen. Biosci Biotechnol Biochem. 1997;61:1919–23.

    CAS  PubMed  Google Scholar 

  61. Yunoki S, Suzuki T, Takai M. Stabilization of low denaturation temperature collagen from fish by physical cross-linking methods. J Biosci Bioeng. 2003;96:575–7.

    CAS  PubMed  Google Scholar 

  62. Addad S, Exposito JY, Faye C, Ricard-Blum S, Lethias C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs. 2011;9:967–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagai T, Ogawa T, Nakamura T, Ito T, Nakagawa H, Fujiki K, Nakao M, Yano T. Collagen of edible jellyfish exumbrella. J Sci Food Agric. 1999;79:855–8.

    CAS  Google Scholar 

  64. Nagai T, Worawattanamateekul W, Suzuki N, Nakamura T, Ito T, Fujiki K, Nakao M, Yano T. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi). Food Chem. 2000;70:205–8.

    CAS  Google Scholar 

  65. Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214:516–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakamura A, Arimoto M, Takeuchi K, Fujii T. A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol Pharm Bull. 2002;25:569–72.

    CAS  PubMed  Google Scholar 

  67. Lusiana, Reichl S, Müller-Goymann CC. Keratin film made of human hair as a nail plate model for studying drug permeation. Eur J Pharm Biopharm. 2011;78:432–40.

    CAS  PubMed  Google Scholar 

  68. Sezgin Arslan T. Keratin-based scaffold fabrication and evaluation of the effectiveness for tissue engineering applications. Canakkale: Mart University Meeting; 2017.

    Google Scholar 

  69. Chen S, Pujari-Palmer S, Rubino S, Westlund V, Ott M, Engqvist H, Xia W. Highly repeatable synthesis of nHA with high aspect ratio. Mater Lett. 2015;159:163–7.

    CAS  Google Scholar 

  70. Gergely G, Wéber F, Lukács I, Tóth AL, Horváth ZE, Mihály J, Balázsi C. Preparation and characterization of hydroxyapatite from eggshell. Ceram Int. 2010;36:803–6.

    CAS  Google Scholar 

  71. Prabakaran K, Rajeswari S. Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template. Spectrochim Acta Part A Mol Biomol Spectrosc. 2009;74:1127–34.

    CAS  Google Scholar 

  72. Zhang C, Yang J, Quan Z, Yang P. Hydroxyapatite nano-and microcrystals with multiform morphologies: Controllable synthesis and luminescence properties. Cryst Growth Des. 2009;9:2725–33.

    CAS  Google Scholar 

  73. Lee JH, Kim YJ. Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceram Int. 2014;40:3361–9.

    CAS  Google Scholar 

  74. Han Y, Li S, Wang X, Bauer I, Yin M. Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans. Ultrason Sonochem. 2007;14:286–90.

    CAS  PubMed  Google Scholar 

  75. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3:1863–87.

    CAS  Google Scholar 

  76. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS  Google Scholar 

  77. Derkus B, Arslan YE, Bayrac AT, Kantarcioglu I, Emregul KC, Emregul E. Development of a novel aptasensor using jellyfish collagen as matrix and thrombin detection in blood samples obtained from patients with various neurodisease. Sensors Actuators B Chem. 2016;228:725–36.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arslan, Y.E., Ozudogru, E., Sezgin Arslan, T., Derkus, B., Emregul, E., Emregul, K.C. (2019). Sophisticated Biocomposite Scaffolds from Renewable Biomaterials for Bone Tissue Engineering. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_4

Download citation

Publish with us

Policies and ethics