Skip to main content

Basic Principles and Current Approach for Soft Tissue Regeneration

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

Due to an unstoppable and ongoing shift in the distribution of western population towards old age, we recently experience a dramatic increase in comorbidities such as diabetes or cardiovascular insufficiency. Being accompanied with a raising number of chronic wounds, this aging shift has become not only an individual medical but also a significant economic burden, consuming more than 4% of health care budgets worldwide. Wound healing requires an exact interplay of several cell types, intra- and extracellular mechanisms, proteins, and signaling pathways. To either reverse age-related alterations or to significantly improve endogenous healing capacity, drugs need to interfere with these complex endogenous mechanisms involved in the response to injury. In this chapter, we summarize the most promising advances in wound healing therapeutics with its challenges and shed light on possible solutions for effective application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindholm C, Searle R. Wound management for the 21st century: combining effectiveness and efficiency. Int Wound J. 2016;13(Suppl 2):5–15.

    PubMed  Google Scholar 

  2. Lanman TH, Ingalls TH. Vitamin C deficiency and wound healing: an experimental and clinical study. Ann Surg. 1937;105(4):616–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tiesler V, Coppa A, Zabala P, Cucina A. Scurvy-related morbidity and death among Christopher Columbus’ Crew at La Isabela, the first european town in the new world (1494–1498): an assessment of the skeletal and historical information. Int J Osteoarchaeol. 2014;26(2):191–202.

    Google Scholar 

  4. Grinnell F, Fukamizu H, Pawelek P, Nakagawa S. Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in long-term cultures supplemented with ascorbic acid. Exp Cell Res. 1989;181(2):483–91.

    CAS  PubMed  Google Scholar 

  5. Marti-Carvajal AJ, Gluud C, Nicola S, Simancas-Racines D, Reveiz L, Oliva P, Cedeño-Taborda J. Growth factors for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2015;10:CD008548.

    Google Scholar 

  6. Senet P, Vicaut E, Beneton N, Debure C, Lok C, Chosidow O. Topical treatment of hypertensive leg ulcers with platelet-derived growth factor-BB: a randomized controlled trial. Arch Dermatol. 2011;147(8):926–30.

    CAS  PubMed  Google Scholar 

  7. Papanas N, Maltezos E. Benefit-risk assessment of becaplermin in the treatment of diabetic foot ulcers. Drug Saf. 2010;33(6):455–61.

    CAS  PubMed  Google Scholar 

  8. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164(6):1935–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanft JR, Pollak RA, Barbul A, van Gils C, Kwon PS, Gray SM, Lynch CJ, Semba CP, Breen TJ. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J Wound Care. 2008;17(1):30–2, 4–7

    CAS  PubMed  Google Scholar 

  10. Singla S, Garg R, Kumar A, Gill C. Efficacy of topical application of beta urogastrone (recombinant human epidermal growth factor) in Wagner’s grade 1 and 2 diabetic foot ulcers: comparative analysis of 50 patients. J Nat Sci Biol Med. 2014;5(2):273–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandez-Montequin JI, Betancourt BY, Leyva-Gonzalez G, Mola EL, Galan-Naranjo K, Ramirez-Navas M, Bermúdez-Rojas S, Rosales F, García-Iglesias E, Berlanga-Acosta J, Silva-Rodriguez R, Garcia-Siverio M, Martinez LH. Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: treatment up to complete wound closure. Int Wound J. 2009;6(1):67–72.

    PubMed  Google Scholar 

  12. Fernandez-Montequin JI, Infante-Cristia E, Valenzuela-Silva C, Franco-Perez N, Savigne-Gutierrez W, Artaza-Sanz H, Morejón-Vega L, González-Benavides C, Eliseo-Musenden O, García-Iglesias E, Berlanga-Acosta J, Silva-Rodríguez R, Betancourt BY, López-Saura PA, Cuban Citoprot-P Study Group. Intralesional injections of Citoprot-P (recombinant human epidermal growth factor) in advanced diabetic foot ulcers with risk of amputation. Int Wound J. 2007;4(4):333–43.

    PubMed  Google Scholar 

  13. Yang S, Geng Z, Ma K, Sun X, Fu X. Efficacy of topical recombinant human epidermal growth factor for treatment of diabetic foot ulcer: a systematic review and meta-analysis. Int J Low Extrem Wounds. 2016;15(2):120–5.

    PubMed  Google Scholar 

  14. Richard JL, Parer-Richard C, Daures JP, Clouet S, Vannereau D, Bringer J, Rodier M, Jacob C, Comte-Bardonnet M. Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot. A pilot, randomized, double-blind, placebo-controlled study. Diabetes Care. 1995;18(1):64–9.

    CAS  PubMed  Google Scholar 

  15. Kanda N, Morimoto N, Ayvazyan AA, Takemoto S, Kawai K, Nakamura Y, Sakamoto Y, Taira T, Suzuki S. Evaluation of a novel collagen-gelatin scaffold for achieving the sustained release of basic fibroblast growth factor in a diabetic mouse model. J Tissue Eng Regen Med. 2014;8(1):29–40.

    CAS  PubMed  Google Scholar 

  16. Uchi H, Igarashi A, Urabe K, Koga T, Nakayama J, Kawamori R, Tamaki K, Hirakata H, Ohura T, Furue M. Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol. 2009;19(5):461–8.

    PubMed  Google Scholar 

  17. Yang Y, Xia T, Chen F, Wei W, Liu C, He S, Li X. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm. 2012;9(1):48–58.

    PubMed  Google Scholar 

  18. Tan Y, Xiao J, Huang Z, Xiao Y, Lin S, Jin L, Feng W, Cai L, Li X. Comparison of the therapeutic effects recombinant human acidic and basic fibroblast growth factors in wound healing in diabetic patients. J Health Sci. 2008;54(4):432–40.

    CAS  Google Scholar 

  19. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care. 2013;2(5):215–24.

    Google Scholar 

  20. Robson MC, Phillip LG, Cooper DM, Lyle WG, Robson LE, Odom L, Hill DP, Hanham AF, Ksander GA. Safety and effect of transforming growth factor-beta(2) for treatment of venous stasis ulcers. Wound Repair Regen. 1995;3(2):157–67.

    CAS  PubMed  Google Scholar 

  21. Ingber DE. Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci U S A. 2005;102(33):11571–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ingber DE. The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst. 2004;1(1):53–68.

    CAS  PubMed  Google Scholar 

  23. Nie B, Yue B. Biological effects and clinical application of negative pressure wound therapy: a review. J Wound Care. 2016;25(11):617–26.

    CAS  PubMed  Google Scholar 

  24. Zhang YG, Wang X, Yang Z, Zhang H, Liu M, Qiu Y, Guo X. The therapeutic effect of negative pressure in treating femoral head necrosis in rabbits. PLoS One. 2013;8(1):e55745.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Liu J, Liu Y, Hu X, Dong M, Wang H, Hu D. Negative pressure wound therapy accelerates rats diabetic wound by promoting agenesis. Int J Clin Exp Med. 2015;8(3):3506–13.

    PubMed  PubMed Central  Google Scholar 

  26. Valente PM, Deva A, Ngo Q, Vickery K. The increased killing of biofilms in vitro by combining topical silver dressings with topical negative pressure in chronic wounds. Int Wound J. 2016;13(1):130–6.

    PubMed  Google Scholar 

  27. Dunn JA, McCance DR, Thorpe SR, Lyons TJ, Baynes JW. Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry. 1991;30(5):1205–10.

    CAS  PubMed  Google Scholar 

  28. Rhie G, Shin MH, Seo JY, Choi WW, Cho KH, Kim KH, Park KC, Eun HC, Chung JH. Aging-and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol. 2001;117(5):1212–7.

    CAS  PubMed  Google Scholar 

  29. Kohen R. Skin antioxidants: their role in aging and in oxidative stress—new approaches for their evaluation. Biomed Pharmacother. 1999;53(4):181–92.

    CAS  PubMed  Google Scholar 

  30. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    CAS  PubMed  Google Scholar 

  31. Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003;5(5):557–61.

    CAS  PubMed  Google Scholar 

  32. Surjushe A, Vasani R, Saple D. Aloe vera: a short review. Indian J Dermatol. 2008;53(4):163.

    PubMed  PubMed Central  Google Scholar 

  33. Hodges YK, Reese SM, Pahl PM, Horwitz LD. Paradoxical effects of iron chelation on growth of vascular endothelial cells. J Cardiovasc Pharmacol. 2005;45(6):539–44.

    CAS  PubMed  Google Scholar 

  34. Pepe A, Meloni A, Capra M, Cianciulli P, Prossomariti L, Malaventura C, Putti MC, Lippi A, Romeo MA, Bisconte MG, Filosa A, Caruso V, Quarta A, Pitrolo L, Missere M, Midiri M, Rossi G, Positano V, Lombardi M, Maggio A. Deferasirox, deferiprone and desferrioxamine treatment in thalassemia major patients: cardiac iron and function comparison determined by quantitative magnetic resonance imaging. Haematologica. 2011;96(1):41–7.

    CAS  PubMed  Google Scholar 

  35. Kuo KH, Mrkobrada M. A systematic review and meta-analysis of deferiprone monotherapy and in combination with deferoxamine for reduction of iron overload in chronically transfused patients with beta-thalassemia. Hemoglobin. 2014;38(6):409–21.

    CAS  PubMed  Google Scholar 

  36. Moayedi Esfahani BA, Reisi N, Mirmoghtadaei M. Evaluating the safety and efficacy of silymarin in beta-thalassemia patients: a review. Hemoglobin. 2015;39(2):75–80.

    CAS  PubMed  Google Scholar 

  37. Ram M, Singh V, Kumawat S, Kumar D, Lingaraju MC, Uttam Singh T, Rahal A, Tandan SK, Kumar D. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015;764:9–21.

    CAS  PubMed  Google Scholar 

  38. Temiz G, Sirinoglu H, Yesiloglu N, Filinte D, Kacmaz C. Effects of Deferoxamine on fat graft survival. Facial Plast Surg. 2016;32(4):438–43.

    CAS  PubMed  Google Scholar 

  39. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem. 2005;280(51):41928–39.

    CAS  PubMed  Google Scholar 

  40. Duscher D, Neofytou E, Wong VW, Maan ZN, Rennert RC, Inayathullah M, Januszyk M, Rodrigues M, Malkovskiy AV, Whitmore AJ, Walmsley GG, Galvez MG, Whittam AJ, Brownlee M, Rajadas J, Gurtner GC. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015;112(1):94–9.

    CAS  PubMed  Google Scholar 

  41. Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 1996;10(20):2527–39.

    CAS  PubMed  Google Scholar 

  42. Brennan KR, Brown AM. Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2004;9(2):119–31.

    PubMed  Google Scholar 

  43. Barham W, Frump AL, Sherrill TP, Garcia CB, Saito-Diaz K, VanSaun MN, Fingleton B, Gleaves L, Orton D, Capecchi MR, Blackwell TS, Lee E, Yull F, Eid JE. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov. 2013;3(11):1286–301.

    CAS  PubMed  Google Scholar 

  44. Leavitt T, Hu MS, Marshall CD, Barnes LA, Lorenz HP, Longaker MT. Scarless wound healing: finding the right cells and signals. Cell Tissue Res. 2016;365(3):483–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E, Young PP. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One. 2010;5(11):e15521.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, Jernigan KK, Meyers KC, Hang BI, Waterson AG, Kim K, Melancon B, Ghidu VP, Sulikowski GA, LaFleur B, Salic A, Lee LA, Miller DM 3rd, Lee E. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol. 2010;6(11):829–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Saraswati S, Deskins DL, Holt GE, Young PP. Pyrvinium, a potent small molecule Wnt inhibitor, increases engraftment and inhibits lineage commitment of mesenchymal stem cells (MSCs). Wound Repair Regen. 2012;20(2):185–93.

    PubMed  PubMed Central  Google Scholar 

  48. Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, Shao M, Gay DL, Ramos R, Hsi TC, Oh JW, Wang X, Ramirez A, Konopelski SE, Elzein A, Wang A, Supapannachart RJ, Lee HL, Lim CH, Nace A, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science. 2017;355(6326):748–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451(7176):340–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chan CK, Longaker MT. Fibroblasts become fat to reduce scarring. Science. 2017;355(6326):693–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Banerjee J, Chan YC, Sen CK. MicroRNAs in skin and wound healing. Physiol Genomics. 2011;43(10):543–56.

    CAS  PubMed  Google Scholar 

  52. Lai WF, Siu PM. MicroRNAs as regulators of cutaneous wound healing. J Biosci. 2014;39(3):519–24.

    CAS  PubMed  Google Scholar 

  53. Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA. 2008;105(49):19300–5.

    CAS  PubMed  Google Scholar 

  54. Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol. 2009;36(2):181–8.

    PubMed  Google Scholar 

  55. Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 2006;13(6):541–52.

    CAS  PubMed  Google Scholar 

  56. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(Pt 18):3209–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu X, Ma L, Liang J, Zhang B, Teng J, Gao C. RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. Biomaterials. 2013;34(8):2038–48.

    CAS  PubMed  Google Scholar 

  58. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2(3):243–7.

    CAS  PubMed  Google Scholar 

  59. Ding H, Schwarz DS, Keene A, Affar e B, Fenton L, Xia X, Shi Y, Zamore PD, Xu Z. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell. 2003;2(4):209–17.

    CAS  PubMed  Google Scholar 

  60. Toloue MM, Ford LP. Antibody targeted siRNA delivery. Methods Mol Biol. 2011;764:123–39.

    CAS  PubMed  Google Scholar 

  61. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121(1–2):64–73.

    CAS  PubMed  Google Scholar 

  62. Walmsley GG, Maan ZN, Wong VW, Duscher D, Hu MS, Zielins ER, Wearda T, Muhonen E, McArdle A, Tevlin R, Atashroo DA, Senarath-Yapa K, Lorenz HP, Gurtner GC, Longaker MT. Scarless wound healing: chasing the holy grail. Plast Reconstr Surg. 2015;135(3):907–17.

    CAS  PubMed  Google Scholar 

  63. Scarabel L, Perrone F, Garziera M, Farra R, Grassi M, Musiani F, Russo Spena C, Salis B, De Stefano L, Toffoli G, Rizzolio F, Tonon F, Abrami M, Chiarappa G, Pozzato G, Forte G, Grassi G, Dapas B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv. 2017;14(6):797–810.

    CAS  PubMed  Google Scholar 

  64. Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, Hu MS, Rajadas J, Rodrigues M, Gurtner GC. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 2014;5(3):79.

    PubMed  PubMed Central  Google Scholar 

  65. Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, Perez MG, Kosaraju R, Hu MS, Walmsley GG, Atashroo D, Khong S, Butte AJ, Gurtner GC. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep. 2014;4:7144.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hadjipanayi E, Schilling AF. Regeneration through autologous hypoxia preconditioned plasma. Organogenesis. 2014;10(2):164–9.

    PubMed  PubMed Central  Google Scholar 

  67. Hadjipanayi E, Bauer AT, Moog P, Salgin B, Kuekrek H, Fersch B, Hopfner U, Meissner T, Schlüter A, Ninkovic M, Machens HG, Schilling AF. Cell-free carrier system for localized delivery of peripheral blood cell-derived engineered factor signaling: towards development of a one-step device for autologous angiogenic therapy. J Control Release. 2013;169(1–2):91–102.

    CAS  PubMed  Google Scholar 

  68. Yildirimer L, Thanh NT, Seifalian AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 2012;30(12):638–48.

    CAS  PubMed  Google Scholar 

  69. Wong VW, Rustad KC, Galvez MG, Neofytou E, Glotzbach JP, Januszyk M, Major MR, Sorkin M, Longaker MT, Rajadas J, Gurtner GC. Engineered pullulan-collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng Part A. 2011;17(5–6):631–44.

    CAS  PubMed  Google Scholar 

  70. Rennert RC, Rodrigues M, Wong VW, Duscher D, Hu M, Maan Z, Sorkin M, Gurtner GC, Longaker MT. Biological therapies for the treatment of cutaneous wounds: phase III and launched therapies. Expert Opin Biol Ther. 2013;13(11):1523–41.

    CAS  PubMed  Google Scholar 

  71. Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, Rajadas J, Gurtner GC. Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol Biosci. 2011;11(11):1458–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, Longaker MT, Gurtner GC. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012;33(1):80–90.

    CAS  PubMed  Google Scholar 

  73. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, Lennon J, Chung MT, Paik K, Nimpf J, Rajadas J, Longaker MT, Gurtner GC. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 2014;3:1079–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lam MT, Nauta A, Meyer NP, Wu JC, Longaker MT. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng Part A. 2013;19(5–6):738–47.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias M. Aitzetmüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aitzetmüller, M.M., Brett, E.A., Sauter, M., Duscher, D. (2019). Basic Principles and Current Approach for Soft Tissue Regeneration. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_3

Download citation

Publish with us

Policies and ethics