Skip to main content

Carbohydrates in Regenerative Medicine: From Scaffolds to Cell Fate Modulators

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

In the last few decades, tremendous progresses have been achieved in the field of regenerative medicine, as a consequence of the better understanding of cell biology, the advances in material science, chemistry, and engineering, and the integration of all of these disciplines within a highly synergistic and multidisciplinary context. Within this extremely multidisciplinary and interdisciplinary field, carbohydrates can play key roles, from being materials that can be shaped into scaffolds able to sustain cell adhesion and proliferation, to signaling biocues capable to drive cell differentiation or homing: carbohydrates chemistry and biology may open new avenues in regenerative medicine. In this chapter, carbohydrates will be presented as biomaterials offering a wide range of useful mechanical and biological properties, as bioactivating cues of materials of different chemical nature and finally as targets of cell surface engineering strategies able to modulate cell fate, in view of advanced cell therapies applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daar AS, Greenwood HL. A proposed definition of regenerative medicine. J Tissue Eng Regen Med. 2007;1:179–84.

    Article  CAS  PubMed  Google Scholar 

  2. Katari R, Peloso A, Orlando G. Tissue engineering and regenerative medicine: semantic considerations for an evolving paradigm. Front Bioeng Biotechnol. 2014;2:57.

    PubMed  Google Scholar 

  3. Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016;11:1775–81.

    Article  CAS  PubMed  Google Scholar 

  4. D’Amico RA, Rubin JP. Regenerative medicine and the future of plastic surgery. Plast Reconstr Surg. 2014;133(6):1511–2.

    Article  PubMed  CAS  Google Scholar 

  5. Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26:2491–500.

    Article  CAS  PubMed  Google Scholar 

  6. Langer R, Tirrell D. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  CAS  PubMed  Google Scholar 

  7. Luo T, Mohan K, Iglesias PA, Robinson DN. Molecular mechanisms of cellular Mechanosensing. Nat Mater. 2013;12:1064–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson J, Itskovitz-Eldor J, Shapiro S, Waknitz M, Swiergiel J, Marshall V, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  Google Scholar 

  9. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    Article  CAS  PubMed  Google Scholar 

  10. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–6.

    Article  CAS  PubMed  Google Scholar 

  11. Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr. 2010;4:377–81.

    Article  Google Scholar 

  12. Partap S, Lyons F, O’Brien FJ. IV.1. Scaffolds & surfaces. Stud Health Technol Inform. 2010;152:187–201.

    PubMed  Google Scholar 

  13. Hollister SJ. Scaffold engineering: a bridge to where? Biofabrication. 2009;1(1):012001.

    Article  PubMed  Google Scholar 

  14. Pashuck ET, Stevens MM. Designing regenerative biomaterial therapies. Sci Transl Med. 2012;4:160–4.

    Article  CAS  Google Scholar 

  15. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;3:88–95.

    Article  CAS  Google Scholar 

  16. Lee KY, Ok Kang LJY, Lee SJ, Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61:1020–32.

    Article  CAS  PubMed  Google Scholar 

  17. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4:999–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim JJ, Evans GRD. Applications of biomaterials in plastic surgery. Clin Plast Surg. 2012;39:359–76.

    Article  PubMed  Google Scholar 

  19. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med. 2008;53:397–411.

    Article  CAS  Google Scholar 

  20. Prasitslip M, Jenwithisuk R, Kongsuwan K, Damrongchai N, Watts P. Cellular responses to chitosan in vitro: the importance of deacetylation. J Mater Sci Mater Med. 2000;11:773–80.

    Article  Google Scholar 

  21. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto N, Saimoto H, Minami S, Okamoto Y. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater. 2015;6:104–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780–92.

    Article  CAS  Google Scholar 

  23. Anitha A, Sowmya S, Sudheesh Kumara PT, Deepthia S, Chennazhia KP, Ehrlich H, Tsurkan M, Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014;39:1644–67.

    Article  CAS  Google Scholar 

  24. Mekhail M, Tabrizian M. Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater. 2014;3:1529–45.

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015:821279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bao Ha TL, Minh Quan T, Nguyen Vu D, Minh Si D. Naturally derived biomaterials: preparation and application. Accessed 11/4/17. doi:https://doi.org/10.5772/55668.

  27. Klemm D, Philipp B, Heinze T,Heinze U, Wagenknecht W. Comprehensive cellulose chemistry: fundamentals and analytical methods, Volume 1. 2004. Accessed 11/4/17. doi:https://doi.org/10.1002/3527601929.ch1/summary.

  28. Klemm D, Philipp B, Heinze T,Heinze U, Wagenknecht W. Comprehensive cellulose chemistry: functionalization of cellulose, Volume 2. 2004 onlinelibrary.wiley.com/. Accessed 11/4/17. doi:https://doi.org/10.1002/3527601937.oth/summary

  29. Smas K. Bacterial cellulose production and its industrial applications. J Bioprocess Biotech. 2014;4:150.

    Google Scholar 

  30. Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL. Nano- and microfiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med. 2005;16:1099–104.

    Article  CAS  PubMed  Google Scholar 

  31. Duarte ARC, Mano JF, Reis RL. Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. J Supercrit Fluids. 2009;49:279–85.

    Article  CAS  Google Scholar 

  32. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6:1285–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Entcheva E, Bien H, Yin L, Chung CY, Farrell M, Kostov Y. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials. 2004;25:5753–62.

    Article  CAS  PubMed  Google Scholar 

  34. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P. (2005). Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26:419–31.

    Article  CAS  PubMed  Google Scholar 

  35. Robert JM, Ashlie M, John N, John S, Je Y. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94.

    Article  CAS  Google Scholar 

  36. Xie SX, Liu Q, Cui SW. Starch modification and applications. In: Cui SW, editor. Food carbohydrates: chemistry, physical properties, and applications. Boca Raton, FL: CRC Press; Taylor & Francis Group; 2005. p. 357–405.

    Google Scholar 

  37. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD. Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydr Polym. 2004;58:139–47.

    Article  CAS  Google Scholar 

  38. Yong Lee K, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    Article  CAS  Google Scholar 

  39. Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: from seaweed to clinical trials. Glob Cardiol Sci Pract. 2016;M2016(1):e201604.

    Google Scholar 

  40. Roach BL, Nover AB, Ateshian GA, Hung CT. Agarose hydrogel characterization for regenerative medicine applications: focus on engineering cartilage. In: Neves NM, Reis RL, editors. Biomaterials from nature for advanced devices and therapies. Hoboken, NJ: John Wiley & Sons, Inc.; 2016.

    Google Scholar 

  41. Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter. 2012;2:278–89.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mihaila SM, Popa EG, Reis RL, Marques AP, Gomes ME. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromolecules. 2014;15:2849–260.

    Article  CAS  PubMed  Google Scholar 

  43. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ. Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol. 2005;80:845–60.

    Article  CAS  Google Scholar 

  44. Sun G, Mao JJ. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine UK. 2012;7:1771–84.

    Article  CAS  Google Scholar 

  45. Silva.Correia J, Oliveira JM, Caridade SG, Oliveira JT, Sousa RA, Mano JF, Reis RL. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. Tissue Eng Regen Med. 2011;5:e97–e107.

    Article  CAS  Google Scholar 

  46. Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL. Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res Part A. 2010;93(3):852–63.

    CAS  Google Scholar 

  47. Rekha MR, Sharma CP. Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs. 2007;20:116–21.

    Google Scholar 

  48. Rosalam S, England R. Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzym Microb Technol. 2006;39:197–207.

    Article  CAS  Google Scholar 

  49. Hickman GJ, Boocock DJ, Pockley AG, Perry CC. The importance and clinical relevance of surfaces in tissue culture. ACS Biomater Sci Eng. 2016;2:152–64.

    Article  CAS  PubMed  Google Scholar 

  50. Gabius HJ, Roth J. An introduction to the sugar code. Histochem Cell Biol. 2017;147:111–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gabius HJ. The sugar code: why glycans are so important. Biosystems. 2018;164:102–11.

    Article  CAS  PubMed  Google Scholar 

  52. Narain R, Sunasee R. Covalent and noncovalent bioconjugation strategies. In: Narain R, editor. Chemistry of bioconjugates: synthesis, characterization, and biomedical applications. Hoboken, NJ: John Wiley & Sons, Inc.; 2014.

    Chapter  Google Scholar 

  53. Azagarsamy MA, Anseth KS. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett. 2013;2:5–9.

    Article  CAS  PubMed  Google Scholar 

  54. Werz DB. Chemical synthesis of carbohydrates and their surface immobilization: a brief introduction. Methods Mol Biol. 2012;808:13–29.

    Article  CAS  PubMed  Google Scholar 

  55. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.

    Article  CAS  PubMed  Google Scholar 

  56. Russo L, Cipolla L. Glycomics: new challenges and opportunities in regenerative medicine. Chem Eur J. 2016;22:13380–8.

    Article  CAS  PubMed  Google Scholar 

  57. Oka JA, Weigel PH. Binding and spreading of hepatocytes on synthetic galatose culture surfaces occur as distinct and separable threshold responses. J Cell Biol. 1986;103:1055–60.

    Article  CAS  PubMed  Google Scholar 

  58. Mager MD, LaPointe V, Stevens MM. Exploring and exploiting chemistry at the cell surface. Nat Chem. 2011;3(8):582–9.

    Article  CAS  PubMed  Google Scholar 

  59. Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T. Biomaterials. 2006;27:576–85.

    Article  CAS  PubMed  Google Scholar 

  60. Griffith LG, Lopina S. Microdistribution of substratum-bound ligands affects cell function: hepatocyte spreading on PEO-tethered galactose. Biomaterials. 1998;19:979–86.

    Article  CAS  PubMed  Google Scholar 

  61. Kang IK, Kim GJ, Kwon OH, Ito Y. Co-culture of hepatocytes and fibroblasts by micropatterned immobilization of beta-galactose derivatives. Biomaterials. 2004;25(18):4225–32.

    Article  CAS  PubMed  Google Scholar 

  62. Park KH, Takei R, Goto M, Maruyama A, Kobayashi A, Kobayashi K, Akaike T. Specific interaction between erythrocytes and a glucose-carrying polymer mediated by the type-1 glucose transporter (GLUT-1) on the cell membrane. J Biochem. 1997;121(6):997–1001.

    Article  CAS  PubMed  Google Scholar 

  63. Kino-oka M, Morinaga Y, Kim MH, Takezawa Y, Kawase M, Yagi K, Taya M. Morphological regulation of rabbit chondrocytes on glucose-displayed surface. Biomaterials. 2007;28(9):1680–8.

    Article  CAS  PubMed  Google Scholar 

  64. Russo L, Russo T, Battocchio C, Taraballi F, Gloria A, D’Amora U, De Santis R, Polzonetti G, Nicotra F, Ambrosio L, Cipolla L. Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study. Carbohydr Res. 2015;20(405):39–46.

    Article  CAS  Google Scholar 

  65. Russo L, Gloria A, Russo T, D’Amora U, Taraballi F, De Santis R, Ambrosio L, Nicotra F, Cipolla L. Glucosamine grafting on poly(ε-caprolactone): a novel glycated polyester as a substrate for tissue engineering. RSC Adv. 2013;3:6286–9.

    Article  CAS  Google Scholar 

  66. Slaney AM, Wright VA, Meloncelli PJ, Harris KD, West LJ, Lowary TL, Buriak JM. Biocompatible carbohydrate-functionalized stainless steel surfaces: a new method for passivating biomedical implants. ACS Appl Mater Interfaces. 2011;3(5):1601–12.

    Article  CAS  PubMed  Google Scholar 

  67. Russo L, Landi E, Tampieri A, Natalello A, Doglia SM, Gabrielli L, Cipolla L, Nicotra F. Sugar-decorated hydroxyapatite: an inorganic material bioactivated with carbohydrates. Carbohydr Res. 2011;346(12):1564–8.

    Article  CAS  PubMed  Google Scholar 

  68. Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med. 2015;9(5):488–503.

    Article  CAS  PubMed  Google Scholar 

  69. Schneider A, Bolcato-Bellemin AL, Francius G, Jedrzejwska J, Schaaf P, Voegel JC, Frisch B, Picart C. Glycated polyelectrolyte multilayer films: differential adhesion of primary versus tumor cells. Biomacromolecules. 2006;7(10):2882–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Howard MJ, Chambers MG, Mason RM, Isacke CM. Distribution of Endo180 receptor and ligand in developing articular cartilage. Osteoarthr Cartil. 2004;12(1):74–82.

    Article  CAS  Google Scholar 

  71. Onodera T, Niikura K, Iwasaki N, Nagahori N, Shimaoka H, Kamitani R, Majima T, Minami A, Nishimura S. Specific cell behavior of human fibroblast onto carbohydrate surface detected by glycoblotting films. Biomacromolecules. 2006;7(11):2949–55.

    Article  CAS  PubMed  Google Scholar 

  72. Meng Q, Haque A, Hexig B, Akaike T. The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata. Biomaterials. 2012;33(5):1414–27.

    Article  CAS  PubMed  Google Scholar 

  73. Sgambato A, Russo L, Montesi M, Panseri S, Marcacci M, Caravà E, Raspanti M, Cipolla L. Different sialoside epitopes on collagen film surfaces direct mesenchymal stem cell fate. ACS Appl Mater Interfaces. 2016;8(24):14952–7.

    Article  CAS  PubMed  Google Scholar 

  74. Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci. 2004;5(3):195–208.

    Article  CAS  PubMed  Google Scholar 

  75. Freeze HH, Eklund EA, Ng BG, Patterson MC. Neurological aspects of human glycosylation disorders. Annu Rev Neurosci. 2015;38:105–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci. 2009;10(9):682–92.

    Article  CAS  PubMed  Google Scholar 

  77. Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology. 2014;39(1):169–88.

    Article  CAS  PubMed  Google Scholar 

  78. Russo L, Sgambato A, Guizzardi R, Vesentini S, Cipolla L, Nicotra F. Glyco-functionalysed biomaterials in neuroregeneration. In: Shama HS, Muresanu D, Sharma A, editors. Drug and gene delivery to the central nervous system for neuroprotection: Springer; 2017. p. 179–98.

    Google Scholar 

  79. Russo L, Sgambato A, Lecchi M, Pastori V, Raspanti M, Natalello A, Doglia SM, Nicotra F, Cipolla L. Neoglucosylated collagen matrices drive neuronal cells to differentiate. ACS Chem Neurosci. 2014;5(4):261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kalovidouris SA, Gama CI, Lee LW, Hsieh-Wilson LC. A role for fucose alpha(1-2) galactose carbohydrates in neuronal growth. J Am Chem Soc. 2005;127(5):1340–1.

    Article  CAS  PubMed  Google Scholar 

  81. Custódio CA, Mano JF. Cell surface engineering to control cellular interactions. Chem Nano Mat. 2016;2(5):376–84.

    PubMed  Google Scholar 

  82. Cheng H, Byrska-Bishop M, Zhang CT, Kastrup CJ, Hwang NS, Tai AK, Lee WW, Xu X, Nahrendorf M, Langer R, Anderson DG. Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of cell-selectin interaction kinetics. Biomaterials. Cham: Springer; 2012;33(20):5004–12.

    Google Scholar 

  83. Stephan MT, Irvine DJ. Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nano Today. 2011;6(3):309–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saliba RC, Pohl NL. Designing sugar mimetics: non-natural pyranosides as innovative chemical tools. Curr Opin Chem Biol. 2016;34:127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: a current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res. 2016;435:121–41.

    Article  CAS  PubMed  Google Scholar 

  86. Wratil PR, Rîdiger Horstkorte R, Angew WR. Metabolic Glycoengineering with N-acyl side chain modified Mannosamines. Angew Chem IntEd. 2016;55:9482–512.

    Article  CAS  Google Scholar 

  87. Kiessling LL, Splain RA. Chemical approaches to glycobiology. Annu Rev Biochem. 2010;79:619–53.

    Article  CAS  PubMed  Google Scholar 

  88. Mahal LK, Charter NW, Angata K, Fukuda M, Koshland DE, Bertozzi CR. A small-molecule modulator of poly-α2,8-sialic acid expression on cultured neurons and tumor cells. Science. 2001;294:380–2.

    Article  CAS  PubMed  Google Scholar 

  89. Sampathkumar SG, Li AV, Jones MB, Sun Z, Yarema KJ. Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat Chem Biol. 2006;2(3):149–52.

    Article  CAS  PubMed  Google Scholar 

  90. Xie R, Hong S, Feng L, Rong J, Chen X. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. Angew Chem Int Ed Engl. 2015;54(52):15782–8.95.

    Article  CAS  Google Scholar 

  91. Woods EC, Yee NA, Shen J, Bertozzi CR. Glycocalyx engineering with a recycling glycopolymer that increases cell survival in vivo. Angew Chem Int Ed Engl. 2015;54:15782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kramer JR, Onoa B, Bustamante C, Bertozzi CR. Chemically tunable mucin chimeras assembled on living cells. Proc Natl Acad Sci U S A. 2015;112:12574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sarkar D, Spencer JA, Phillips JA, Zha W, Schafer S, Spelke DP, Mortensen LJ, Ruiz JP, Vemula PK, Sridharan R, Kumar S, Karnik R, Lin CP, Karp JM. Engineered cell homing. Blood. 2011;118:184–91.

    Article  CAS  Google Scholar 

  94. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med. 2008;14:181–7.

    Article  CAS  PubMed  Google Scholar 

  95. Chapanian R, Kwan DH, Constantinescu I, Shaikh FA, Rossi NA, Withers SG, Kizhakkedathu JN. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat Commun. 2014;5:4683.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cipolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guizzardi, R., Vacchini, M., Cipolla, L. (2019). Carbohydrates in Regenerative Medicine: From Scaffolds to Cell Fate Modulators. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_13

Download citation

Publish with us

Policies and ethics