Skip to main content

Anti-Biofilm Activity of Viruses, Bacteria, Fungi, and Lichens: Mechanisms and Impact on Clinical Practice

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

When adopting a sessile lifestyle, bacteria gain the adaptive ability to tolerate a wide range of antimicrobials, becoming increasingly resilient. In the clinic, there is an acute need to find new options for the treatment of biofilm-driven infections, and research on biofilm-active agents is well underway. In this chapter, we aim to characterize the existing body of knowledge on the topic of natural anti-biofilm compounds, by describing the main types of agents, their mechanisms and their potential clinical role and impact on medical practice. Bacteriophages are viruses that infect bacterial cells and either destroy the cells or circumvent their ability to form biofilms, through the action of specific enzymes. Bacteria can also synthetize specific molecules, bioactive peptides, or secondary metabolites that display anti-biofilm activity either through a lytic action or through inhibiting the formation of extracellular polymeric substances. Last but not least, anti-biofilm compounds have also been isolated from clinically relevant fungi or lichen-associated fungi, as some of their cell wall components or secondary metabolites may display important roles in limiting bacterial and fungal biofilms alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Săndulescu O. Managing sticky situations—anti-biofilm agents. Germs. 2016;6(2):49.

    Google Scholar 

  2. Nunez-Nunez M, Navarro MD, Palomo V, Rajendran NB, Del Toro MD, Voss A, Sharland M, Sifakis F, Tacconelli E, Rodriguez-Bano J. The methodology of surveillance for antimicrobial resistance and healthcare-associated infections in Europe (SUSPIRE): a systematic review of publicly available information. Clin Microbiol Infect. 2018;24(2):105–9.

    CAS  PubMed  Google Scholar 

  3. Săndulescu O, Streinu-Cercel A, Săndulescu M, Neguț A, Calistru P, Berciu I, Preoțescu L, Streinu-Cercel A. Quorum sensing and biofilm formation in Staphylococcus species. Therap Pharmacol Clin Toxicol. 2015;19(2):45–51.

    Google Scholar 

  4. Bleotu C, Chifiriuc M, Mircioaga D, Săndulescu O, Aldea I, Banu O, Ion D, Diaconu C, Lazar V. The influence of nutrient culture media on Escherichia coli adhesion and biofilm formation ability. Rom Biotechnol Lett. 2017;22(2):12483–91.

    CAS  Google Scholar 

  5. Săndulescu O. Global distribution of antimicrobial resistance in E. coli. J Contemp Clin Pract. 2016;2(2):69–74.

    Google Scholar 

  6. Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D, Katznelson E, Rajadas J, Birnbaum ME, Arrigoni A, Braun KR, Evanko SP, Stevens DA, Kaminsky W, Singh PK, Parks WC, Bollyky PL. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe. 2015;18(5):549–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brzozowska E, Pyra A, Pawlik K, Janik M, Gorska S, Urbanska N, Drulis-Kawa Z, Gamian A. Hydrolytic activity determination of Tail Tubular Protein A of Klebsiella pneumoniae bacteriophages towards saccharide substrates. Sci Rep. 2017;7(1):18048.

    PubMed  PubMed Central  Google Scholar 

  8. Colavecchio A, Goodridge LD. Phage therapy approaches to reducing pathogen persistence and transmission in animal production environments: opportunities and challenges. Microbiol Spectr. 2017;5:3. https://doi.org/10.1128/microbiolspec.PFS-0017-2017.

    Article  Google Scholar 

  9. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5(1):213–8.

    PubMed  Google Scholar 

  10. Matsuda T, Freeman TA, Hilbert DW, Duff M, Fuortes M, Stapleton PP, Daly JM. Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery. 2005;137(6):639–46.

    PubMed  Google Scholar 

  11. Dufour N, Delattre R, Ricard JD, Debarbieux L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin yhan by beta-lactams. Clin Infect Dis. 2017;64(11):1582–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Neguț A, Streinu-Cercel A, Săndulescu O, Moţoi M, Berciu I, Popa M, Streinu-Cercel A. Bacteriophages – novel biotechnology tools available in clinical practice in Romania. Rom Biotechnol Lett. 2017;22(2):12492–5.

    Google Scholar 

  13. Negut AC, Chifiriuc MC, Sandulescu O, Streinu-Cercel A, Oprea M, Dragulescu EC, Gheorghe I, Berciu I, Coralia B, Popa M, Otelea D, Talapan D, Dorobat O, Codita I, Popa MI. Bacteriophage-driven inhibition of biofilm formation in Staphylococcus strains from patients attending a Romanian reference center for infectious diseases. FEMS Microbiol Lett. 2016;363:18. pii: fnw193

    Google Scholar 

  14. Negut AC, Sandulescu O, Popa M, Streinu-Cercel A, Alavidze Z, Berciu I, Bleotu C, Popa MI, Chifiriuc MC. Experimental approach for bacteriophage susceptibility testing of planktonic and sessile bacterial populations—study protocol. Germs. 2014;4(4):92–6.

    PubMed  PubMed Central  Google Scholar 

  15. Săndulescu O, Bleotu C, Matei L, Streinu-Cercel A, Oprea M, Drăgulescu EC, Chifiriuc MC, Rafila A, Pirici D, Tălăpan D, Dorobăț OM, Neguț AC, Oțelea D, Berciu I, Ion DA, Codiță I, Calistru PI. Comparative evaluation of aggressiveness traits in staphylococcal strains from severe infections versus nasopharyngeal carriage. Microb Pathog. 2016;102:45–53.

    PubMed  Google Scholar 

  16. Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.

    CAS  PubMed  Google Scholar 

  17. Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. Bio Drugs. 2014;28(3):265–74.

    CAS  Google Scholar 

  18. Mushtaq N, Redpath MB, Luzio JP, Taylor PW. Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrob Agents Chemother. 2004;48(5):1503–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zelmer A, Martin MJ, Gundogdu O, Birchenough G, Lever R, Wren BW, Luzio JP, Taylor PW. Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1. Microbiology. 2010;156(Pt 7):2205–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Glonti T, Chanishvili N, Taylor PW. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol. 2010;108(2):695–702.

    CAS  PubMed  Google Scholar 

  21. Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017;101(8):3103–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Keary R, Sanz-Gaitero M, van Raaij MJ, O’Mahony J, Fenton M, McAuliffe O, Hill C, Ross RP, Coffey A. Characterization of a bacteriophage-derived murein peptidase for elimination of antibiotic-resistant Staphylococcus aureus. Curr Protein Pept Sci. 2016;17(2):183–90.

    CAS  PubMed  Google Scholar 

  23. Drilling AJ, Cooksley C, Chan C, Wormald PJ, Vreugde S. Fighting sinus-derived Staphylococcus aureus biofilms in vitro with a bacteriophage-derived muralytic enzyme. Int Forum Allergy Rhinol. 2016;6(4):349–55.

    PubMed  Google Scholar 

  24. Domenech M, Garcia E, Moscoso M. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother. 2011;55(9):4144–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chopra S, Harjai K, Chhibber S. Potential of sequential treatment with minocycline and S. aureus specific phage lysin in eradication of MRSA biofilms: an in vitro study. Appl Microbiol Biotechnol. 2015;99(7):3201–10.

    CAS  PubMed  Google Scholar 

  26. Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, Becker SC, Foster-Frey J, Donovan DM. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother. 2015;70(5):1453–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gutierrez D, Ruas-Madiedo P, Martinez B, Rodriguez A, Garcia P. Effective removal of staphylococcal biofilms by the endolysin LysH5. PLoS One. 2014;9(9):e107307.

    PubMed  PubMed Central  Google Scholar 

  28. Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cellwall-degrading enzyme. Appl Microbiol Biotechnol. 2010;86(5):1439–49.

    CAS  PubMed  Google Scholar 

  29. Linden SB, Zhang H, Heselpoth RD, Shen Y, Schmelcher M, Eichenseher F, Nelson DC. Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol. 2015;99(2):741–52.

    CAS  PubMed  Google Scholar 

  30. Briers Y, Walmagh M, Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol. 2011;110(3):778–85.

    CAS  PubMed  Google Scholar 

  31. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J. A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol. 2017;8:293.

    PubMed  PubMed Central  Google Scholar 

  32. Troskie AM, Rautenbach M, Delattin N, Vosloo JA, Dathe M, Cammue BP, Thevissen K. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother. 2014;58(7):3697–707.

    PubMed  PubMed Central  Google Scholar 

  33. Mayer FL, Kronstad JW. Disarming fungal pathogens: Bacillus safensis inhibits virulence factor production and biofilm formation by Cryptococcus neoformans and Candida albicans. MBio. 2017;8(5):e01537–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, Groleau MC, Dietl AM, Visca P, Haas H, Deziel E, Stevens DA. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2018;200(1):e00345–17.

    CAS  PubMed  Google Scholar 

  35. Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology. 2009;155(Pt 7):2148–56.

    CAS  PubMed  Google Scholar 

  36. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ Microbiol. 2013;15(2):334–46.

    CAS  PubMed  Google Scholar 

  37. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Romero D, Aguilar C, Losick R, Kolter R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A. 2010;107(5):2230–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahn KB, Baik JE, Park OJ, Yun CH, Han SH. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS One. 2018;13(2):e0192694.

    PubMed  PubMed Central  Google Scholar 

  40. Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med. 2018;22(3):1972–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rossoni RD, de Barros PP, de Alvarenga JA, Ribeiro FC, Velloso MDS, Fuchs BB, Mylonakis E, Jorge AOC, Junqueira JC. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling. 2018;34(2):212–25.

    CAS  PubMed  Google Scholar 

  42. Matsubara VH, Wang Y, Bandara HM, Mayer MP, Samaranayake LP. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 2016;100(14):6415–26.

    CAS  PubMed  Google Scholar 

  43. Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL, Jorge AO, Junqueira JC. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015;6(1):29–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan Y, Leonhard M, Moser D, Ma S, Schneider-Stickler B. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Arch Oral Biol. 2018;85:40–5.

    CAS  PubMed  Google Scholar 

  45. Krzyściak W, Kościelniak D, Papież M, Vyhouskaya P, Zagórska-Świeży K, Kołodziej I, Bystrowska B, Jurczak A. Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients. 2017;9(11):E1242.

    Google Scholar 

  46. Wannun P, Piwat S, Teanpaisan R. Purification, characterization, and optimum conditions of fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11. Appl Biochem Biotechnol. 2016;179(4):572–82.

    CAS  PubMed  Google Scholar 

  47. Chopra L, Singh G, Kumar Jena K, Sahoo DK. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep. 2015;5:13412.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sharma V, Harjai K, Shukla G. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol (Praha). 2018;63(2):181–90.

    CAS  PubMed  Google Scholar 

  49. Berrios P, Fuentes JA, Salas D, Carreno A, Aldea P, Fernandez F, Trombert AN. Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model. Benef Microbes. 2017;9(2):257–68.

    PubMed  Google Scholar 

  50. Patel RM, Denning PW. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis. what is the current evidence? Clin Perinatol. 2013;40(1):11–25.

    PubMed  Google Scholar 

  51. Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2013;57(11):5572–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Todorov SD, de Paula OAL, Camargo AC, Lopes DA, Nero LA. Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Rev Argent Microbiol. 2018;50:48–55.

    PubMed  Google Scholar 

  53. Lagrafeuille R, Miquel S, Balestrino D, Vareille-Delarbre M, Chain F, Langella P, Forestier C. Opposing effect of Lactobacillus on in vitro Klebsiella pneumoniae in biofilm and in an in vivo intestinal colonisation model. Benef Microbes. 2018;9(1):87–100.

    CAS  PubMed  Google Scholar 

  54. Duarte AFS, Ceotto-Vigoder H, Barrias ES, Souto-Padron T, Nes IF, Bastos M. Hyicin 4244, the first sactibiotic described in staphylococci, exhibits an anti-staphylococcal biofilm activity. Int J Antimicrob Agents. 2018;51:349–56.

    CAS  PubMed  Google Scholar 

  55. Kim Y, Lee JW, Kang SG, Oh S, Griffiths MW. Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7. Anaerobe. 2012;18(5):539–45.

    PubMed  Google Scholar 

  56. Lewis Oscar F, Nithya C, Alharbi SA, Alharbi NS, Thajuddin N. In vitro and in silico attenuation of quorum sensing mediated pathogenicity in Pseudomonas aeruginosa using Spirulina platensis. Microb Pathog. 2018;116:246–56.

    CAS  Google Scholar 

  57. Marangoni A, Foschi C, Micucci M, Nahui Palomino RA, Gallina Toschi T, Vitali B, Camarda L, Mandrioli M, De Giorgio M, Aldini R, Corazza I, Chiarini A, Cevenini R, Budriesi R. In vitro activity of Spirulina platensis water extract against different Candida species isolated from vulvo-vaginal candidiasis cases. PLoS One. 2017;12(11):e0188567.

    PubMed  PubMed Central  Google Scholar 

  58. Mala R, Annie Aglin A, Ruby Celsia AS, Geerthika S, Kiruthika N, VazagaPriya C, Srinivasa KK. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol. 2017;11(5):612–20.

    PubMed  Google Scholar 

  59. Wypij M, Swiecimska M, Czarnecka J, Dahm H, Rai M, Golinska P. Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics. J Appl Microbiol. 2018;124:1411–24.

    CAS  PubMed  Google Scholar 

  60. drugs KCTA. Persisters come under fire. Nat Rev Drug Discov. 2014;13(1):18–9.

    Google Scholar 

  61. Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013;503(7476):365–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Scopel M, Abraham WR, Henriques AT, Macedo AJ. Dipeptide cis-cyclo(Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorg Med Chem Lett. 2013;23(3):624–6.

    CAS  PubMed  Google Scholar 

  63. Baldry M, Nielsen A, Bojer MS, Zhao Y, Friberg C, Ifrah D, Glasser Heede N, Larsen TO, Frokiaer H, Frees D, Zhang L, Dai H, Ingmer H. Norlichexanthone reduces virulence gene expression and biofilm formation in Staphylococcus aureus. PLoS One. 2016;11(12):e0168305.

    PubMed  PubMed Central  Google Scholar 

  64. You J, Du L, King JB, Hall BE, Cichewicz RH. Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates. ACS Chem Biol. 2013;8(4):840–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang X, You J, King JB, Powell DR, Cichewicz RH. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. J Nat Prod. 2012;75(4):707–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Walencka E, Wieckowska-Szakiel M, Rozalska S, Sadowska B, Rozalska B. A surface-active agent from Saccharomyces cerevisiae influences staphylococcal adhesion and biofilm development. Z Naturforsch C. 2007;62(5–6):433–8.

    CAS  PubMed  Google Scholar 

  67. Zhou J, Bi S, Chen H, Chen T, Yang R, Li M, Fu Y, Jia AQ. Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Front Microbiol. 2017;8:769.

    PubMed  PubMed Central  Google Scholar 

  68. Sharma R, Lambu MR, Jamwal U, Rani C, Chib R, Wazir P, Mukherjee D, Chaubey A, Khan IA. Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) inhibitory activity of terreic acid isolated from Aspergillus terreus. J Biomol Screen. 2016;21(4):342–53.

    CAS  PubMed  Google Scholar 

  69. Bergamo Estrela A, Abraham W. Fungal metabolites for the control of biofilm infections. Agri. 2016;37(6):37.

    Google Scholar 

  70. Cushion MT, Collins MS, Linke MJ. Biofilm formation by Pneumocystis spp. Eukaryot Cell. 2009;8(2):197–206.

    CAS  PubMed  Google Scholar 

  71. Li TX, Yang MH, Wang XB, Wang Y, Kong LY. Synergistic antifungal meroterpenes and dioxolanone derivatives from the endophytic fungus Guignardia sp. J Nat Prod. 2015;78(11):2511–20.

    CAS  PubMed  Google Scholar 

  72. Millot M, Girardot M, Dutreix L, Mambu L, Imbert C. Antifungal and anti-biofilm activities of acetone lichen extracts against Candida albicans. Molecules. 2017;22(4):E651.

    PubMed  Google Scholar 

  73. Nithyanand P, Beema Shafreen RM, Muthamil S, Karutha Pandian S. Usnic acid, a lichen secondary metabolite inhibits Group A Streptococcus biofilms. Antonie Van Leeuwenhoek. 2015;107(1):263–72.

    CAS  PubMed  Google Scholar 

  74. Pompilio A, Pomponio S, Di Vincenzo V, Crocetta V, Nicoletti M, Piovano M, Garbarino JA, Di Bonaventura G. Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiol. 2013;8(2):281–92.

    CAS  PubMed  Google Scholar 

  75. Nithyanand P, Beema Shafreen RM, Muthamil S, Karutha Pandian S. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol Res. 2015;179:20–8.

    CAS  PubMed  Google Scholar 

  76. Pires RH, Lucarini R, Mendes-Giannini MJ. Effect of usnic acid on Candida orthopsilosis and C. parapsilosis. Antimicrob Agents Chemother. 2012;56(1):595–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kvasnickova E, Matatkova O, Cejkova A, Masak J. Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods. 2015;118:106–12.

    CAS  PubMed  Google Scholar 

  78. Taresco V, Francolini I, Padella F, Bellusci M, Boni A, Innocenti C, Martinelli A, D’Ilario L, Piozzi A. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles. Korean J Couns Psychother. 2015;52:72–81.

    CAS  Google Scholar 

  79. Martinelli A, Bakry A, D’Ilario L, Francolini I, Piozzi A, Taresco V. Release behavior and antibiofilm activity of usnic acid-loaded carboxylated poly(L-lactide) microparticles. Eur J Pharm Biopharm. 2014;88(2):415–23.

    CAS  PubMed  Google Scholar 

  80. Grumezescu V, Holban AM, Grumezescu AM, Socol G, Ficai A, Vasile BS, Trusca R, Bleotu C, Lazar V, Chifiriuc CM, Mogosanu GD. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication. 2014;6(3):035002.

    CAS  PubMed  Google Scholar 

  81. Kim S, Greenleaf R, Miller MC, Satish L, Kathju S, Ehrlich G, Post JC, Sotereanos NG, Stoodley P. Mechanical effects, antimicrobial efficacy and cytotoxicity of usnic acid as a biofilm prophylaxis in PMMA. J Mater Sci Mater Med. 2011;22(12):2773–80.

    CAS  PubMed  Google Scholar 

  82. Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother. 2004;48(11):4360–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chang W, Li Y, Zhang L, Cheng A, Liu Y, Lou H. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biol Pharm Bull. 2012;35(10):1794–801.

    CAS  PubMed  Google Scholar 

  84. Gokalsin B, Sesal NC. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2016;32(9):150.

    PubMed  Google Scholar 

  85. Gokalsin B, Aksoydan B, Erman B, Sesal NC. Reducing virulence and biofilm of Pseudomonas aeruginosa by potential quorum sensing inhibitor carotenoid: zeaxanthin. Microb Ecol. 2017;74(2):466–73.

    CAS  PubMed  Google Scholar 

  86. Chang W, Zhang M, Li Y, Li X, Gao Y, Xie Z, Lou H. Lichen endophyte derived pyridoxatin inactivates Candida growth by interfering with ergosterol biosynthesis. Biochim Biophys Acta. 2015;1850(9):1762–71.

    CAS  PubMed  Google Scholar 

  87. Li Y, Chang W, Zhang M, Li X, Jiao Y, Lou H. Synergistic and drug-resistant reversing effects of diorcinol D combined with fluconazole against Candida albicans. FEMS Yeast Res. 2015;15(2):fov001.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Săndulescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Săndulescu, O., Streinu-Cercel, A., Săndulescu, M., Streinu-Cercel, A. (2019). Anti-Biofilm Activity of Viruses, Bacteria, Fungi, and Lichens: Mechanisms and Impact on Clinical Practice. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_11

Download citation

Publish with us

Policies and ethics