Skip to main content

Quantization of Electrical and Thermal Conductance in Nanostructures

  • Chapter
  • First Online:
Introduction to Quantum Metrology
  • 820 Accesses

Abstract

This chapter opens with a presentation of the classical Drude theory of electrical conduction and a theory proposed by Landauer. Based on the assumption that electrical conduction can be modeled as transfer of electrons between two electron reservoirs, the Landauer theory proves to describe particularly well the electrical resistance in nanoscale conductors, i.e., in nanostructures. Surprisingly, this theory implies that the conductance (and resistance) of a nanostructure is independent of its material and temperature, and only depends on the dimensions of the sample, changing in a stepwise manner with a step of h/2e2 representing the conductance quantum. The quantization of electrical and thermal conductance in nanostructures has been verified experimentally. Conductance quantization in nanostructures is used in the analysis of large-scale integration circuits, as required by the currently used 14 nm technology and future technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Agrait, G. Rubio, S. Vieira, Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995–3998 (1995)

    Article  ADS  Google Scholar 

  2. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Hartcourt College Publisher, Orlando, 1976)

    Google Scholar 

  3. J.L. Costa-Krämer et al., Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top. Surf. Sci. 342, L1144–L1149 (1995)

    Article  Google Scholar 

  4. M.P. Das, F. Geen, Landauer formula without Landauer’s assumptions. J. Phys. Condens. Matter 14, L687 (2003)

    ADS  Google Scholar 

  5. T.S. Fisher, Thermal Energy at the Nanoscale (World Scientific, New Jersey-London, 2014)

    Google Scholar 

  6. J.K. Gimzewski, R. Möller, Transition from the tunneling regime to point contact studied using STM. Phys. Rev. B 36, 1284–1287 (1987)

    Article  ADS  Google Scholar 

  7. A. Greiner, L. Reggiani, T. Kuhn, L. Varani, Thermal conductivity and lorenz number for onedimensional ballistic transport. Phys. Rev. Lett. 78, 1114–1117 (1997)

    Article  ADS  Google Scholar 

  8. K. Hansen et al., Quantized conductance in relays. Phys. Rev. B 56, 2208–2220 (1997)

    Article  ADS  Google Scholar 

  9. H. Ibach, H. Lüth, Solid-State Physics. An Introduction to Principles of Materials Science (Springer, Heidelberg, 1995)

    MATH  Google Scholar 

  10. A. Kamenec, W. Kohn, Landauer conductance without two chemical potentials. Phys. Rev. B 63, 155304 (2001)

    Article  ADS  Google Scholar 

  11. R. Landauer, Spatial variation of currents and fields due to localized scatters in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957)

    Article  Google Scholar 

  12. R. Landauer, Conductance determined by transmission: probes and quantised constriction resistance. J. Phys. Condens. Matter 1, 8099–8110 (1989)

    Article  ADS  Google Scholar 

  13. C.J. Muller et al., Qunatization effects in the conductance of metallic contacts at room temperature. Phys. Rev. B 53, 1022–1025 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. W. Nawrocki, M. Wawrzyniak, J. Pajakowski, Transient states in electrical circuits with a nanowire. J. Nanosci. Nanotechnol. 9, 1350–1353 (2009)

    Article  Google Scholar 

  15. F. Ott, J. Lunney, Quantum conduction: a step-by-step guide. Europhys. News 29, 13–15 (1998)

    Article  ADS  Google Scholar 

  16. L.G.C. Rego, G. Kirczenow, Qunatized thermal conductance of dielectric quantum wire. Phys. Rev. Lett. 81, 232–235 (1998)

    Article  ADS  Google Scholar 

  17. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000)

    Article  ADS  Google Scholar 

  18. Y.V. Sharvin, A possible method for studying Fermi surface. J. Exper. Theoret. Phys. 21, 655–656 (1965)

    Google Scholar 

  19. P. Středa, Quantised thermopower of a channel in the ballistic regime. J. Phys. Condens. Matter 1, 1025–1028 (1989)

    ADS  Google Scholar 

  20. The International Technology Roadmap for Semiconductors. Internet site (2013)

    Google Scholar 

  21. van Wees et al., Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988)

    Article  ADS  Google Scholar 

  22. B.J. van Wees et al., Quantum ballistic and adiabatic electron transport studied with quantum point contacts. Phys. Rev. B 43, 12431–12453 (1991)

    Article  ADS  Google Scholar 

  23. M. Wawrzyniak, Measurements of electric nanocontacts (in Polish). Serie: Dissertations, Publishing House of Poznan University of Technology (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Nawrocki .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nawrocki, W. (2019). Quantization of Electrical and Thermal Conductance in Nanostructures. In: Introduction to Quantum Metrology. Springer, Cham. https://doi.org/10.1007/978-3-030-19677-6_7

Download citation

Publish with us

Policies and ethics