Skip to main content

Quantum Hall Effect and the Resistance Standard

  • Chapter
  • First Online:
Introduction to Quantum Metrology
  • 842 Accesses

Abstract

This chapter opens with a presentation of the classical Drude theory of electrical conduction and a theory proposed by Landauer. Based on the assumption that electrical conduction can be modeled as transfer of electrons between two electron reservoirs, the Landauer theory proves to describe particularly well the electrical resistance in nanoscale conductors, i.e., in nanostructures. Surprisingly, this theory implies that the conductance (and resistance) of a nanostructure is independent of its material and temperature, and only depends on the dimensions of the sample, changing in a stepwise manner with a step of h/2e2 representing the conductance quantum. The quantization of electrical and thermal conductance in nanostructures has been verified experimentally. Conductance quantization in nanostructures is used in the analysis of large-scale integration circuits, as required by the currently used 14 nm technology and future technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Delahaye, T.J. Witt, B. Jeckelmann, B. Jeanneret, Comparison of quantum Hall effect resistance standards of the OFMET and BIPM. Metrologia 32, 385–388 (1996)

    Article  ADS  Google Scholar 

  2. F. Delahaye, T.J. Witt, R.E. Elmquist, R.F. Dziuba, Comparison of quantum Hall effect resistance standards of the NIST and the BIPM. Metrologia 37, 173–176 (2000)

    Article  ADS  Google Scholar 

  3. D.C. Elias et al., Control of grapheme’s properties by reversible hydrogenation. Science 323, 610–613 (2009)

    Article  ADS  Google Scholar 

  4. A. Hartland, The quantum Hall effect and resistance standards. Metrologia 29, 175–190 (1992)

    Article  ADS  Google Scholar 

  5. H. Ibach, H. Lüth, Solid-State Physics. An Introduction to Principles of Materials Science (Springer, Heidelberg, 1995)

    Google Scholar 

  6. R.B. Laughlin, Fractional quantization. Nobel lecture. Rev. Mod. Phys. 71, 863–874 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  8. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  9. T. Oe et al., Fabrication of the 10 kΩ QHR array device. Elektronika (6), 47–49 (2011)

    Google Scholar 

  10. H.L. Störmer, The fractional quantum Hall effect. Nobel Lecture. Rev. Mod. Phys. 71, 875–889 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of fine structure contact based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  12. H. Wang, D. Nezich, J. Kong, T. Palacios, Graphene frequency multipliers. IEEE Electron Dev. Lett. 30, 547–549 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Nawrocki .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nawrocki, W. (2019). Quantum Hall Effect and the Resistance Standard. In: Introduction to Quantum Metrology. Springer, Cham. https://doi.org/10.1007/978-3-030-19677-6_6

Download citation

Publish with us

Policies and ethics