Skip to main content

Using Cost-Based Solution Densities from TSP Relaxations to Solve Routing Problems

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

The Traveling Salesman Problem, at the heart of many routing applications, has a few well-known relaxations that have been very effective to compute lower bounds on the objective function or even to perform cost-based domain filtering in constraint programming models. We investigate other ways of using such relaxations based on computing the frequency of edges in near-optimal solutions to a relaxation. We report early empirical results on symmetric instances from tsplib.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Concorde TSP Solver. https://en.wikipedia.org/wiki/Concorde_TSP_Solver

  2. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005). https://doi.org/10.1007/11493853_7

    Chapter  MATH  Google Scholar 

  3. Benchimol, P., van Hoeve, W.J., Régin, J.-C., Rousseau, L.-M., Rueher, M.: Improved filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

    Article  MathSciNet  Google Scholar 

  4. Brockbank, S., Pesant, G., Rousseau, L.-M.: Counting spanning trees to guide search in constrained spanning tree problems. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 175–183. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_16

    Chapter  Google Scholar 

  5. Broder, A.Z., Mayr, E.W.: Counting minimum weight spanning trees. J. Algorithms 24(1), 171–176 (1997)

    Article  MathSciNet  Google Scholar 

  6. Caseau, Y., Laburthe, F.: Solving various weighted matching problems with constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 17–31. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0017427

    Chapter  Google Scholar 

  7. Christofides, N., Mingozzi, A., Toth, P.: State space relaxation procedures for the computation of bounds to routing problems. Networks 11, 145–164 (1981)

    Article  MathSciNet  Google Scholar 

  8. de Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Weighted spanning tree constraint with explanations. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 98–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_8

    Chapter  MATH  Google Scholar 

  9. Delaite, A., Pesant, G.: Counting weighted spanning trees to solve constrained minimum spanning tree problems. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 176–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_14

    Chapter  Google Scholar 

  10. Dooms, G., Katriel, I.: The Minimum Spanning Tree constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 152–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11889205_13

    Chapter  MATH  Google Scholar 

  11. Dooms, G., Katriel, I.: The “Not-Too-Heavy Spanning Tree” constraint. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 59–70. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72397-4_5

    Chapter  MATH  Google Scholar 

  12. Ducomman, S., Cambazard, H., Penz, B.: Alternative filtering for the weighted circuit constraint: comparing lower bounds for the TSP and solving TSPTW. In: Schuurmans and Wellman [22], pp. 3390–3396

    Google Scholar 

  13. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)

    Article  MathSciNet  Google Scholar 

  14. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48085-3_14

    Chapter  Google Scholar 

  15. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)

    Article  MathSciNet  Google Scholar 

  16. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Math. Program. 1, 6–25 (1970)

    Article  Google Scholar 

  17. Kilby, P., Shaw, P.: Vehicle routing. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2, pp. 801–836. Elsevier, New York (2006)

    Chapter  Google Scholar 

  18. Pesant, G.: Counting-Based Search for Constraint Optimization Problems. In: Schuurmans and Wellman [22], pp. 3441–3448

    Google Scholar 

  19. Pesant, G., Quimper, C.-G., Zanarini, A.: Counting-based search: branching heuristics for constraint satisfaction problems. J. Artif. Int. Res. 43(1), 173–210 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Régin, J.-C.: Simpler and incremental consistency checking and arc consistency filtering algorithms for the weighted spanning tree constraint. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 233–247. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68155-7_19

    Chapter  Google Scholar 

  21. Régin, J.-C., Rousseau, L.-M., Rueher, M., van Hoeve, W.-J.: The weighted spanning tree constraint revisited. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 287–291. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_31

    Chapter  MATH  Google Scholar 

  22. Schuurmans, D., Wellman, M.P. (eds.): Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 12–17 February 2016. AAAI Press, Phoenix (2016)

    Google Scholar 

  23. Soules, G.W.: New permanental upper bounds for nonnegative matrices. Linear Multilinear A. 51(4), 319–337 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Coste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coste, P., Lodi, A., Pesant, G. (2019). Using Cost-Based Solution Densities from TSP Relaxations to Solve Routing Problems. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics