Skip to main content

Impact of High Frequency Electromagnetic Fields on Process of Angiogenesis

  • Conference paper
  • First Online:
CMBEBIH 2019 (CMBEBIH 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 73))

Included in the following conference series:

  • 2256 Accesses

Abstract

The facts about the effects of high frequency electromagnetic fields (HF EMF) on human health are often controversial and incomplete. For this reason, the aim of this study was to examine impact of HF EMF on process of angiogenesis in eight rat organs of: pancreas, kidney, thyroid, liver, cerebrum, thymus, gastric gland and spleen. Wistar strain rats were exposed to HF EM fields with the following characteristics: 1.9 GHz frequency, 0.24 A/m intensity, electric field strength of 4.79 V/m, and SAR (specific absorption rate) value of 2.0 W/m2. Exposure time was 7 h per day, 5 days per week, over the course of 60 days. Our experiment was conducted on a total of 20 male rats divided randomly into two equal groups: one group of animals was exposed to HF EM fields as described above whereas, the other group of animals was not exposed to any HF EM fields. In our study histological and stereological analysis shows the results that volume density and number of endothelial cells of blood vessels increased with statistical significance in all organs of rats that were exposed to the HF EMF compared to the unexposed group. Increase in volume and number of endothelial cells in analyzed organs indicates the process of angiogenesis induced by HF EM fields, which can be used for therapeutic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gojković, I., Paraš, S., Gajanin, R., Matavulj, M.: The influence of extremely low-frequency electromagnetic field on the basal ganglia structures of the rat brain. Proc. Nat. Sci. Matica Srpska. 121, 27–38 (2011)

    Article  Google Scholar 

  2. Raus Balind, S., Manojlović-Stojanovski, M., Milošević, V., Todorović, D., Nikolić, L.J., Petković, B.: Short and long term exposure to alternating magnetic field (50 Hz, 0.5 mT) affects rat pituitary ACTH cells: stereologgical study: (2016). Environ. Toxicol. 31, 461–468

    Google Scholar 

  3. Al-Akhras, M.A., Darmani, H., Elbetieha, A.: Influence of 50 Hz magnetic fields on sex hormones and other fertility parameters of adult male rats. Bioelectromagnetics 27, 127–131 (2006)

    Article  Google Scholar 

  4. Ahmet, K., Gokhan, C., Fehmi, O., Mehmet, A., Hakan, M., Sukru, O.: Effects of 900 MHz electromagnetic field on THS and thyroid hormones in rats. Toxicol. Lett. 157(3), 257–262 (2005)

    Article  Google Scholar 

  5. Tang, J., Zhang, Y., Yang, L., Chen, Q., Tan, L., Zuo, S., Feng, H., Chen, Z., Zhu, G.: Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res. 1601, 92–101 (2015)

    Article  Google Scholar 

  6. Attia, A.A., Yehia, A.M.: Histological, ultrastructural and immunohistochemical studies of the low frequency electromagnetic field effect on thymus, spleen and liver of albino swiss mice. Pak. J. Biol. Sci. 5, 931–937 (2002)

    Article  Google Scholar 

  7. Blank, M., Goodman, R.: Low frequency electromagnetic fields evoke the stress response: mechanism of interaction with DNA and biomedical applications”. IEEE Trans. Plasma Sci. 30, 1497–1500 (2002)

    Article  Google Scholar 

  8. Sener, D.R., Davis, G.E.: Angiogenesis. Cold Spring Harb. Perspect. Biol. 200 3:8:a005090

    Google Scholar 

  9. Tepper, O.M., Callaghan, M.J., Chang, E.I., Galiano, R.D., Bhatt, K.A., Baharestani, S., Gan, J., Simon, B.: Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. (2004)

    Google Scholar 

  10. Yen-Patton, G.P.A., Patton, W.F., Beer, D.M., Jacobson, B.: Endothelial cell response to pulsed electromagnetic fields: Stimulation of growth rate and angiogenesis in vitro. J. Cell. Physiol. (1999)

    Google Scholar 

  11. Kališnik, M.: Stereological Section. ZDAJ, IHE, Faculty of Medicine, Ljubljana (1985)

    Google Scholar 

  12. Alexandrescu, S., Tatevian, N., Olutoye, O., Brown, E.R.: Persistent hyperinsulinemic hypoglycemia of infancy: constitutive activation of the mTOR pathway with associated exocrine-islet transdifferentiation and therapeutic implications. Int. Clin. Exp. Pathol. 3(7), 691–705 (2010)

    Google Scholar 

  13. Teta, M., Long, S.Y., Wartschow, L.M., Rankin, M.M., Kushner, J.A.: Very slow turnover of beta-cells in aged adult mice. Diabetes 54(9), 2557–2567 (2005)

    Article  Google Scholar 

  14. Tzaphlidou, M., Fotiou, E.: Collagen as a target for electromagnetic fields. Effects of 910-MHz on rat brain. Bioelectromagnetics 183:183–93 (2006)

    Google Scholar 

  15. Böttinger, E.R., Jakubczak, J.L., Roberts, I.S., Mumy, M., Hemmati, P., Bagnall, K., Merlino, G., Wakefileld, L.M.: Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J. 16(10), 2621–2633 (1997)

    Article  Google Scholar 

  16. McKay, J.C., Frank, S., Prato, S.F., Thomas, W.A.: A Literature Review: The effects of magnetic field exposure on blood ow and blood vessels in the microvasculature. Bioelectromagnetics 28(2), 81–98 (2007)

    Article  Google Scholar 

  17. Okano, H., Onmori, R., Tomita, N., Ikada, Y.: Effects of a moderate-intensity static magnetic field on VEGF-A stimulated endothelial capillary tubule formation in vitro. Bioelectromagnetics 27, 628–640 (2006)

    Article  Google Scholar 

  18. Dai, C., Brissova, M., Reinert, R.B., Nyman, L., Liu, E.H., Thompson, C., Shostak, A., Shiota, M., Takahashi, C., Powers, A.C.: Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis. Diabetes 62(12), 4144–53 (2013)

    Article  Google Scholar 

  19. Delle Monache, S., Alessandro, R., Iorio, R., Gualtieri, G., Colonna, R.: Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human. Bioelectromagnetics 29(8), 640–648 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smiljana Paraš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paraš, S., Vojinović, N., Amidžić, L. (2020). Impact of High Frequency Electromagnetic Fields on Process of Angiogenesis. In: Badnjevic, A., Škrbić, R., Gurbeta Pokvić, L. (eds) CMBEBIH 2019. CMBEBIH 2019. IFMBE Proceedings, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-17971-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17971-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17970-0

  • Online ISBN: 978-3-030-17971-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics