Skip to main content

EMG Signal Classification Using Discrete Wavelet Transform and Rotation Forest

  • Conference paper
  • First Online:
CMBEBIH 2019 (CMBEBIH 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 73))

Included in the following conference series:

Abstract

Electromyographic (EMG) signals are used for the diagnosis of neuromuscular disorders. We have used machine learning algorithms in diagnosing neuromuscular disorders as a decision support system. Hence, in this study, for feature extraction DWT has been used and the Rotation Forest ensemble classifier has been used for classification. Furthermore, we also investigated the performance of different classifiers with Rotation Forest. The performance of a classifier is enhanced using the Rotation Forest ensemble classifier. Significant amount of performance improvement was achieved with a combination of Discrete Wavelet Transform (DWT), and Rotation Forest using k-fold cross validation. Experimental results show the feasibility of Rotation Forest, and we also derive some valuable conclusions on the performance of ensemble learning methods for diagnosis of neuromuscular disorders. Results are promising and showed that the ANN with Random Forest ensemble method achieved an accuracy of 99.13%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subasi, A.: Classification of EMG signals using combined features and soft computing techniques. Appl. Soft Comput. 12(8), 2188–2198 (2012)

    Article  Google Scholar 

  2. Subasi, A.: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43(5), 576–586 (2013)

    Article  Google Scholar 

  3. Begg, R., Lai, D.T., Palaniswami, M.: Computational Intelligence in Biomedical Engineering. CRC Press (2008)

    Google Scholar 

  4. Subasi, A., Yilmaz, M., Ozcalik, H.R.: Classification of EMG signals using wavelet neural network. J. Neurosci. Methods 156(1), 360–367 (2006)

    Article  Google Scholar 

  5. Bozkurt, M.R., Subasi, A., Koklukaya, E., Yilmaz, M.: Comparison of AR parametric methods with subspace-based methods for EMG signal classification using stand-alone and merged neural network models. Turk. J. Electr. Eng. Comput. Sci. 24(3), 1547–1559 (2016)

    Article  Google Scholar 

  6. Gokgoz, E., Subasi, A.: Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. J. Med. Syst. 38(4), 31 (2014)

    Article  Google Scholar 

  7. Gokgoz, E., Subasi, A.: Comparison of decision tree algorithms for EMG signal classification using DWT. Biomed. Signal Process. Control 18, 138–144 (2015)

    Article  Google Scholar 

  8. Subasi, A.: Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. Comput. Biol. Med. 42(8), 806–815 (2012)

    Article  Google Scholar 

  9. Subasi, A.: A decision support system for diagnosis of neuromuscular disorders using DWT and evolutionary support vector machines. Signal Image Video Process. 9(2), 399–408 (2015)

    Article  Google Scholar 

  10. Kamali, T., Boostani, R., Parsaei, H.: A multi-classifier approach to MUAP classification for diagnosis of neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 191–200 (2014)

    Article  Google Scholar 

  11. Katsis, C.D., Exarchos, T.P., Papaloukas, C., Goletsis, Y., Fotiadis, D.I., Sarmas, I.: A two-stage method for MUAP classification based on EMG decomposition. Comput. Biol. Med. 37(9), 1232–1240 (2007)

    Article  Google Scholar 

  12. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39(8), 7420–7431 (2012)

    Article  Google Scholar 

  13. Rasheed, S., Stashuk, D., Kamel, M.: A software package for interactive motor unit potential classification using fuzzy k-NN classifier. Comput. Methods Programs Biomed. 89(1), 56–71 (2008)

    Article  Google Scholar 

  14. Dobrowolski, A.P., Wierzbowski, M., Tomczykiewicz, K.: Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders. Comput. Methods Programs Biomed. 107(3), 393–403 (2012)

    Article  Google Scholar 

  15. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43(6), 1947–1958 (2003)

    Article  Google Scholar 

  16. Liu, M., Wang, M., Wang, J., Li, D.: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sens. Actuators B Chem. 177, 970–980 (2013)

    Article  Google Scholar 

  17. Vetterli, M., Herley, C.: Wavelets and filter banks: Theory and design. IEEE Trans. Signal Process. 40(9), 2207–2232 (1992)

    Article  MATH  Google Scholar 

  18. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE Signal Process. Mag., 8(LCAV-ARTICLE-1991-005), 14–38 (1991)

    Google Scholar 

  20. Thakor, N.V., Gramatikov, B., Sherman, D.: Wavelet (time-scale) analysis in biomedical signal processing. In: Bronzino, J.D. (ed.) The Biomedical Engineering Handbook, vol. 56, 2nd edn, pp. 1–56. CRC Press LLC, Boca Raton, Florida (2000)

    Google Scholar 

  21. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2011)

    Google Scholar 

  22. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  23. Hall, M., Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Kaufmann Burlingt (2011)

    Google Scholar 

  24. Kalmegh, S.: Analysis of WEKA data mining algorithm REPTree, Simple CART and RandomTree for classification of Indian news. Int. J. Innov. Sci. Eng. Technol. 2(2), 438–446 (2015)

    Google Scholar 

  25. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  26. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. Presented at the Australasian joint conference on artificial intelligence, pp. 1015–1021, 2006

    Google Scholar 

  27. Viera, A.J., Garrett, J.M.: Understanding interobserver agreement: the kappa statistic. Fam. Med. 37(5), 360–363 (2005)

    Google Scholar 

  28. Lantz, C.A., Nebenzahl, E.: Behavior and interpretation of the κ statistic: Resolution of the two paradoxes. J. Clin. Epidemiol. 49(4), 431–434 (1996)

    Article  Google Scholar 

  29. Yang, Z., Zhou, M.: Kappa statistic for clustered physician–patients polytomous data. Comput. Stat. Data Anal. 87, 1–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Abdullah, A.A., Subasi, A., Qaisar, S.M.: Surface EMG signal classification by using WPD and ensemble tree classifiers. Presented at the CMBEBIH 2017: proceedings of the international conference on medical and biological engineering 2017, vol. 62, p. 475, 2017

    Google Scholar 

  31. Subasi, A., Alharbi, L., Madani, R., Qaisar, S.M.: Surface EMG based classification of basic hand movements using rotation forest. Presented at the advances in science and engineering technology international conferences (ASET), 2018, pp. 1–5, 2018

    Google Scholar 

Download references

Acknowledgements

The author would like to extend many thanks to Dr. Mustafa Yilmaz at University of Gaziantep, Neurology Department for providing the EMG data used in this research.

Funding This work was supported by Effat University with the Decision Number of UC#7/28 Feb. 2018/10.2-44 h, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamit Subasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subasi, A., Yaman, E. (2020). EMG Signal Classification Using Discrete Wavelet Transform and Rotation Forest. In: Badnjevic, A., Škrbić, R., Gurbeta Pokvić, L. (eds) CMBEBIH 2019. CMBEBIH 2019. IFMBE Proceedings, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-17971-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17971-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17970-0

  • Online ISBN: 978-3-030-17971-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics