Skip to main content

Miniaturized Stimulator for Imaging of Live Cell Responses to High Frequency Mechanical Vibration

  • Conference paper
  • First Online:
CMBEBIH 2019 (CMBEBIH 2019)

Abstract

Cellular mechanobiology is highly important for tissue development and disease formation. However, lack of proper tools limit investigation of the cellular responses to different mechanical cues. High frequency (HF) vibration has already been applied in different cellular applications, but the knowledge of the stimulation effect on cells is limited. To meet this challenge, we designed a HF vibration stimulator for combined mechanical manipulation of live cells and high-resolution light-microscopy. Our system utilizes a commercial miniaturized speaker to vibrate a 3D printed sample vehicle horizontally. Technical tests demonstrated excellent performance at lower frequencies (30–60 Hz), enabling even high magnitude (HMHF, Gpeak ≥ 1 Gpeak) method. Real-time acceleration measurement and light-microscopy both revealed accurately and precisely produced low magnitude (LMHF, Gpeak < 1 Gpeak) vibrations. With our system, we could observe cellular responses to the LMHF (0.2 Gpeak, 30 Hz) vibration. In this paper, we introduce an inexpensive stimulation platform for the mechanobiology research of different cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44(4), 593–599 (2011)

    Article  Google Scholar 

  2. Tirkkonen, L., Halonen, H., Hyttinen, J., Kuokkanen, H., Sievänen, H., Koivisto, A.M., Mannerström, B., Sándor, G.K., Suuronen, R., Miettinen, S., Haimi, S.: The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J. R. Soc. Interface 8(65), 1736–1747 (2011)

    Article  Google Scholar 

  3. Zhang, C., Li, J., Zhang, L., Zhou, Y., Hou, W., Quan, H., Li, X., Chen, Y., Yu, H.: Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch. Oral. Biol. 57(10), 1395–1407 (2012)

    Article  Google Scholar 

  4. Uzer, G., Pongkitwitoon, S., Ete Chan, M., Judex, S.: Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J. Biomech. 46(13), 2296–2302 (2013)

    Article  Google Scholar 

  5. Chen, X., He, F., Zhong, D.Y., Luo, Z.P.: Acoustic-frequency vibratory stimulation regulates the balance between osteogenesis and adipogenesis of human bone marrow-derived mesenchymal stem cells. Biomed. Res. Int. 2015, 540731 (2015)

    Google Scholar 

  6. Pemberton, G.D., Childs, P., Reid, S., Nikukar, H., Tsimbouri, P.M., Gadegaard, N., Curtis, A.S., Dalby, M.J.: Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking. Nanomedicine (Lond). 10(4), 547–560 (2015)

    Article  Google Scholar 

  7. Tong, Z., Duncan, R.L., Jia, X.: Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds. Tissue Eng. Part A. 19(15–16), 1862–1878 (2013)

    Article  Google Scholar 

  8. Cho, H., Seo, Y.K., Jeon, S., Yoon, H.H., Choi, Y.K., Park, J.K.: Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration. Life Sci. 90(15–16), 591–599 (2012)

    Article  Google Scholar 

  9. Takeuchi, R., Saito, T., Ishikawa, H., Takigami, H., Dezawa, M., Ide, C., Itokazu, Y., Ikeda, M., Shiraishi, T., Morishita, S.: Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. Arthritis Rheum. 54(6), 897–905 (2006)

    Article  Google Scholar 

  10. Holdsworth, D.W., Nikolov, H.N., Au, J., Beaucage, K., Kishimoto J., Dixon, S.J.: Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells. In: Molthen, R.C., Weaver, J.B. (eds.) Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging, Proceedings of SPIE, 8317, 831715-1–831715-6. SPIE (2012)

    Google Scholar 

  11. Lorusso, D., Nikolov, H.N., Chmiel, T., Beach, R.J., Sims, S.M., Dixon, S.J., Holdsworth, D.W.: A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation. In: Krol, A., Gimi, B. (eds.) Medical imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, Proceedings of SPIE, 10137, 101370F-1–101370F-7. SPIE (2017)

    Google Scholar 

  12. Mäki, A.J., Verho, J., Kreutzer, J., Ryynänen, T., Rajan, D., Pekkanen-Mattila, M., Ahola, A., Hyttinen, J., Aalto-Setälä, K., Lekkala, J., Kallio, P.: A portable microscale cell culture system with indirect temperature control. SLAS Technol. 1, 2472630318768710 (2018)

    Google Scholar 

  13. Kreutzer, J., Ylä-Outinen, L., Mäki, A.J., Ristola, M., Narkilahti, S., Kallio, P.: Cell culture chamber with gas supply for prolonged recording of human neuronal cells on microelectrode array. J. Neurosci. Methods 280, 27–35 (2017)

    Article  Google Scholar 

  14. Uzer, G., Thompson, W.R., Sen, B., Xie, Z., Miller, S.S., Bas, G., Styner, M., Rubin, C.T., Judex, S., Burridge, K., Rubin, J.: Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed Nucleus. Stem Cells 33(6), 2063–2076 (2015)

    Article  Google Scholar 

  15. Uzer, G., Pongkitwitoon, Ian, S., Thompson, W.R., Rubin, J., Chan, M.E., Judex, S.: Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro. PLoS One. 9(3), e90840 (2014)

    Article  Google Scholar 

  16. Milner, J.S., Grol, M.W., Beaucage, K.L., Dixon, S.J., Holdsworth, D.W.: Finite-element modeling of viscoelastic cells during high-frequency cyclic strain. J. Funct. Biometr. 3(1), 209–224 (2012)

    Article  Google Scholar 

  17. Wang, L., Hsu, H.Y., Li, X., Xian, C.J.: Effects of frequency and acceleration amplitude on osteoblast mechanical vibration responses: a finite element study. Biomed. Res. Int. 2016, 2735091 (2016)

    Google Scholar 

Download references

Acknowledgements

This study was funded by Finnish Funding agency for Innovation (TEKES, Human spare parts project), City of Tampere, Instrumentariumin tiedesäätiö s.r. foundation, Finnish Cultural Foundation (The Kainuu Regional Fund), and the Finnish Academy of Science and Letters (Väisälä Foundation).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi T. Halonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halonen, H.T., Hyttinen, J.A.K., Ihalainen, T.O. (2020). Miniaturized Stimulator for Imaging of Live Cell Responses to High Frequency Mechanical Vibration. In: Badnjevic, A., Škrbić, R., Gurbeta Pokvić, L. (eds) CMBEBIH 2019. CMBEBIH 2019. IFMBE Proceedings, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-17971-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17971-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17970-0

  • Online ISBN: 978-3-030-17971-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics