Skip to main content

A Notion of Positive Definiteness for Arithmetical Functions

  • Conference paper
  • First Online:
Matrices, Statistics and Big Data (IWMS 2016)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

  • 771 Accesses

Abstract

In the theory of Fourier transform some functions are said to be positive definite based on the positive definiteness property of a certain class of matrices associated with these functions. In the present article we consider how to define a similar positive definiteness property for arithmetical functions, whose domain is not the set of real numbers but merely the set of positive integers. After finding a suitable definition for this concept we shall use it to construct a partial ordering on the set of arithmetical functions. We shall study some of the basic properties of our newly defined relations and consider a couple of well-known arithmetical functions as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altinisik, E., Sagan, B. E., & Tuglu, N. (2005). GCD matrices, posets, and nonintersecting paths. Linear Multilinear Algebra, 53, 75–84.

    Article  MathSciNet  Google Scholar 

  2. Apostol, T. M. (1976). Introduction to analytic number theory. Berlin: Springer.

    Book  Google Scholar 

  3. Bhatia R. (2006). Infinitely divisible matrices. American Mathematical Monthly, 113:3, 221–235.

    Article  MathSciNet  Google Scholar 

  4. Bourque, K., & Ligh, S. (1993). Matrices associated with arithmetical functions. Linear and Multilinear Algebra, 34, 261–267

    Article  MathSciNet  Google Scholar 

  5. Encyclopedic Dictionary of Mathematics (1987). Cambridge, MA: MIT Press.

    Google Scholar 

  6. Graham, R. L., Knuth, D. E., Patashnik, O., & Liu, S. (1994). Concrete mathematics: A foundation for computer science (2nd ed.). Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  7. Gould, H. W. (2010). Fundamentals of series: Table II: Examples of series which appear in calculus. Retrieved May 3, 2010, from http://www.math.wvu.edu/~gould/Vol.2.PDF

    Google Scholar 

  8. Hong, S., & Loewy, R. (2004). Asymptotic behavior of eigenvalues of greatest common divisor matrices. Glasgow Mathematical Journal, 46:3, 551–569.

    Google Scholar 

  9. Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  10. Horn, R. A., Johnson, C. R. (1991). Topics in matrix analysis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  11. Ilmonen, P., & Haukkanen, P. (2011). Smith meets Smith: Smith normal form of Smith matrix. Linear Multilinear Algebra 59:5, 557–564.

    Google Scholar 

  12. McCarthy, P. J. (1986). Introduction to arithmetical functions. Berlin: Springer.

    Book  Google Scholar 

  13. Mattila, M., & Haukkanen, P. (2014). On the positive definiteness and eigenvalues of meet and join matrices. Discrete Mathematics, 326, 9–19.

    Article  MathSciNet  Google Scholar 

  14. Ovall, J. S. (2004). An analysis of GCD and LCM matrices via the LDL T-factorization. Electronic Journal of Linear Algebra, 11, 51–58.

    Article  MathSciNet  Google Scholar 

  15. Rajarama Bhat, B. V. (1991). On greatest common divisor matrices and their applications. Linear Algebra and its Applications, 158, 77–97.

    Article  MathSciNet  Google Scholar 

  16. Sándor, J., Crstici, B. (2004). Handbook of number theory II. Dordecht: Kluwer.

    Book  Google Scholar 

  17. Smith, H. J. S. (1875–1876). On the value of a certain arithmetical determinant. Proceedings of the London Mathematical Society, 7, 208–212

    Google Scholar 

Download references

Acknowledgement

The authors wish to thank the reviewers for valuable comments and suggestions that helped us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Mattila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mattila, M., Haukkanen, P. (2019). A Notion of Positive Definiteness for Arithmetical Functions. In: Ahmed, S., Carvalho, F., Puntanen, S. (eds) Matrices, Statistics and Big Data. IWMS 2016. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-17519-1_5

Download citation

Publish with us

Policies and ethics