Skip to main content

Rheological Characterization in the Development of Topical Drug Products

  • Chapter
  • First Online:
The Role of Microstructure in Topical Drug Product Development

Abstract

This chapter presents an overview of utilizing rheological properties to develop topical semisolid products. A review of theoretical concepts and practical applications is described to show that rheological properties are an important attribute in the development of topical drug products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Aben, C. Holtze, T. Tadros, P. Schurtenberger, Rheological investigations on the creaming of depletion-flocculated emulsions. Langmuir 28(21), 7967–7975 (2012)

    Article  CAS  Google Scholar 

  • T. Alfrey Jr., E. F. Gurnee, Rheology, Theory and Application (vol. 1, F. R. Eirich, Ed., Academic Press, New York, 1956). p. 387

    Google Scholar 

  • E.N. Andrade, The viscosity of liquids. Nature 125(3148), 309–310 (1930)

    Article  Google Scholar 

  • J.A. Baird, R. Olayo-Valles, C. Rinaldi, L.S. Taylor, Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol. J. Pharm. Sci. 99(1), 154–168 (2010)

    Article  CAS  Google Scholar 

  • B.W. Barry, The self-bodying action of the mixed emulsifier sodium dodecyl sulfate/cetyl alcohol. J. Colloid Interface Sci. 28(1), 82–91 (1968)

    Article  CAS  Google Scholar 

  • B.W. Barry, E. Shotton, The influence of 1-hexadecanol on the acid-catalysed hydrolysis of sodium dodecyl sulphate. J. Pharm. Pharmacol. 19(12), 785–791 (1967)

    Article  CAS  Google Scholar 

  • J. Bibette, F. Leal-Calderon, P. Poulin, Emulsions: Basic principles. Rep. Prog. Phys. 62, 969–1033 (1999)

    Article  CAS  Google Scholar 

  • R. Brummer, M. Griebenow, F. Hetzel, V. Schlesiger, R. Uhlmann, Rheological swing test to predict the temperature stability of cosmetic emulsions, in Proceedings of the 21st IFSCC Congress, (H. Ziolkowsky GmbH, Augsburg, Berlin, Germany, 2000), pp. 11–14

    Google Scholar 

  • L. Buhse et al., Topical drug classification. Int. J. Pharm. 295(1–2), 101–112 (2005)

    Article  CAS  Google Scholar 

  • R.P. Chhabra, Non-Newtonian fluids: An introduction, in Rheology of Complex Fluids, (Springer, New York, 2010), pp. 3–34

    Chapter  Google Scholar 

  • S.S. Davis, Viscoelastic properties of pharmaceutical semisolids I: Ointment bases. J. Pharm. Sci. 58(4), 412–418 (1969a)

    Article  CAS  Google Scholar 

  • S.S. Davis, Viscoelastic properties of pharmaceutical semisolids. II. Creams. J. Pharm. Sci. 58(4), 418–421 (1969b)

    Article  CAS  Google Scholar 

  • S.S. Davis, Viscoelastic properties of pharmaceutical semisolids IV: Destructive oscillatory testing. J. Pharm. Sci. 60(9), 1356–1360 (1971)

    Article  CAS  Google Scholar 

  • Drug Nomenclature Monographs – Dosage Forms, Monograph C-DRG-00201. US Food and Drug Administration website. Available at: https://www.fda.gov/drugs/data-standards-manual-monographs/drug-nomenclature-monographs

  • G.M. Eccleston, B.W. Barry, S.S. Davis, Correlation of viscoelastic functions for pharmaceutical semisolids: Comparison of creep and oscillatory tests for oil-in-water creams stabilized by mixed emulsifiers. J. Pharm. Sci. 62(12), 1954–1961 (1973)

    Article  CAS  Google Scholar 

  • J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961)

    Book  Google Scholar 

  • A. Froelich, T. Osmałek, P. Kunstman, R. Roszak, W. Białas, Rheological and textural properties of microemulsion-based polymer gels with indomethacin. Drug Dev. Ind. Pharm. 42(6), 854–861 (2016)

    Article  Google Scholar 

  • M. Gašperlin, L. Tušar, M. Tušar, J. Kristl, J. Šmid-Korbar, Lipophilic semisolid emulsion systems: Viscoelastic behaviour and prediction of physical stability by neural network modelling. Int. J. Pharm. 168(2), 243–254 (1998)

    Article  Google Scholar 

  • H. Green, R.N. Weltmann, Equations of thixotropic breakdown for rotational viscometer. Industrial & Engineering Chemistry Analytical Edition 18(3), 167–172 (1946)

    Article  CAS  Google Scholar 

  • F. Hetzel, J. Nielsen, S. Wiesner, R. Brummer, Dynamic mechanical freezing points of cosmetic o/w emulsions and their stability at low temperatures. Appl. Rheol. 10(3), 114–118 (2000)

    Article  Google Scholar 

  • M. Houska, Engineering Aspects of the Rheology of Thixotropic Liquids (D, Czech Technical University of Prague, Prague, 1981)

    Google Scholar 

  • Y. Inoue, K. Furuya, M. Matumoto, I. Murata, M. Kimura, I. Kanamoto, A comparison of the physicochemical properties and a sensory test of acyclovir creams. Int. J. Pharm. 436(1–2), 265–271 (2012)

    Article  CAS  Google Scholar 

  • M. Korhonen, L. Hellen, J. Hirvonen, J. Yliruusi, Rheological properties of creams with four different surfactant combinations-effect of storage time and conditions. Int. J. Pharm. 221(1–2), 187–196 (2001)

    Article  CAS  Google Scholar 

  • D. Krajišnik, J. Milic, Polymer-stabilized emulsion systems: Structural characteristics and physical stability evaluation. Drug Dev. Ind. Pharm. 29(6), 701–711 (2003)

    Article  Google Scholar 

  • G.R. Krawczyk, A. Venables, D. Tuason, Microcrystalline cellulose in Handbook of Hydrocolloids, 2nd edn. (Woodhead Publishing Limited, 2009), pp. 740–759

    Google Scholar 

  • Y.S. Krishnaiah, X. Xu, Z. Rahman, Y. Yang, U. Katragadda, R. Lionberger, J.R. Peters, K. Uhl, M.A. Khan, Development of performance matrix for generic product equivalence of acyclovir topical creams. Int. J. Pharm. 475(1–2), 110–122 (2014)

    Article  CAS  Google Scholar 

  • V.S. Kulkarni, C. Shaw, Essential Chemistry for Formulators of Semisolid and Liquid Dosages (Academic Press, 2015)

    Google Scholar 

  • M.S. Kwak, H.J. Ahn, K.W. Song, Rheological investigation of body cream and body lotion in actual application conditions. Korea-Australia Rheology Journal 27(3), 241–251 (2015)

    Article  Google Scholar 

  • A. Langenfeld, V. Schmitt, M.J. Stébé, Rheological behavior of fluorinated highly concentrated reverse emulsions with temperature. J. Colloid Interface Sci. 218(2), 522–528 (1999)

    Article  CAS  Google Scholar 

  • D. Langevin, La coalescence. Bulletin de la Société française de physique (115), 9–13 (1998)

    Google Scholar 

  • R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)

    Google Scholar 

  • H. Leaderman, Elastic and Creep Properties of Filamentous Materials and Other High Polymers, (The Textile foundation, Washington, DC,1`1 1943)

    Google Scholar 

  • R. Lionberger, Topical Bioequivalence Update, Powerpoint Presentation, ACPS meeting, Available at: https://slideplayer.com/slide/3256839/, Published by: Lisa Popejoy (2003)

  • C.W. Macosko, Rheology, Principles, Measurements and Applications (Wiley-VCH, New York, 1994)

    Google Scholar 

  • A. Martin, Physical Pharmacy, 4th edn. (Lippincott, Williams and Wilkins, Philadelphia, 1993)

    Google Scholar 

  • H. Masmoudi, P. Piccerelle, Y. LeDreau, J. Kister, A rheological method to evaluate the physical stability of highly viscous pharmaceutical oil-in-water emulsion. Pharm. Res. 23(8), 1937–1947 (2006)

    Article  CAS  Google Scholar 

  • D.J. Mastropietro, R. Nimroozi, H. Omidian, Rheology in pharmaceutical formulations-a perspective. J Dev Drugs 2, 108–116 (2013)

    Google Scholar 

  • A. Messaâdi, N. Dhouibi, H. Hamda, et al., A new equation relating the viscosity Arrhenius temperature and the activation energy for some Newtonian classical solvents,” J. Chem. 2015, Article ID 163262, 12 pages (2015). https://doi.org/10.1155/2015/163262

    Article  Google Scholar 

  • T. Mezger, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers (Vincentz Verlag. Hanover, Germany, 2002)

    Google Scholar 

  • J. Mougel, O. Alvarez, C. Baravian, F. Caton, P. Marchal, M.J. Stébé, L. Choplin, Aging of an unstable w/o gel emulsion with a nonionic surfactant. Rheol. Acta 45(5), 555–560 (2006)

    Article  CAS  Google Scholar 

  • R. Pal, Yield stress and viscoelastic properties of high internal phase ratio emulsions. Colloid Polym. Sci. 277, 583–588 (1999)

    Article  CAS  Google Scholar 

  • P. Pandey, G.D. Ewing, Rheological characterization of petrolatum using a controlled stress rheometer. Drug Dev. Ind. Pharm. 34(2), 157–163 (2008)

    Article  CAS  Google Scholar 

  • E.-K. Park, K.-W. Song, Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: Steady shear flow behavior. Arch. Pharm. Res. 33(1), 141–150 (2010)

    Article  CAS  Google Scholar 

  • L.E. Pena, B.L. Lee, J.F. Stearns, Structural rheology of a model ointment. Pharm. Res. 11(6), 875–881 (1994)

    Article  CAS  Google Scholar 

  • H.M. Princen, A.D. Kiss, Rheology of foams and highly concentrated emulsions. J. Colloid Interface Sci. 112, 427–437 (1986)

    Article  CAS  Google Scholar 

  • A. Rathapon, A. Sirivat, P. Vayumhasuwan, Viscoelastic properties of carbopol 940 gels and their relationships to piroxicam diffusion coefficients in gel bases. Pharm. Res. 22(12), 2134–2140 (2005)

    Google Scholar 

  • M. Rieger, Emulsions, in The Theory and Practice of Industrial Pharmacy, ed. by L. Lachman, H. A. Lieberman, J. L. Kanig, (Lea & Febiger, Philadelphia, 1986), pp. 210–212

    Google Scholar 

  • M.M. Rieger, Stability testing of macroemulsions. Cosmetics and Toiletries 106(5), 59–69 (1991)

    CAS  Google Scholar 

  • E.L. Rowe, Effect of emulsifier concentration and type on the particle size distribution of emulsions. J. Pharm. Sci. 54(2), 260–264 (1965)

    Article  CAS  Google Scholar 

  • T. Tadros, Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv. Colloid Interf. Sci. 108, 227–258 (2004)

    Article  Google Scholar 

  • C. Tiu, D.V. Boger, Complete rheological characterization of time-dependent food products. J. Texture Stud. 5(3), 329–338 (1974)

    Article  Google Scholar 

  • United States Pharmacopeia and National Formulary (USP 42-NF 37). (United States Pharmacopeial Convention, Rockville, 2018). Chapters 911–913 (2018)

    Google Scholar 

  • R.N. Weltmann, Breakdown of thixotropic structure as function of time. J. Appl. Phys. 14(7), 343–350 (1943)

    Article  CAS  Google Scholar 

  • L. Weng, X. Chen, W. Chen, Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules 8(4), 1109–1115 (2007)

    Article  CAS  Google Scholar 

  • J.H. Wood, Pharmaceutical rheology, in The Theory and Practice of Industrial Pharmacy, ed. by L. Lachman, H. A. Lieberman, J. L. Kanig, 3rd edn., (Lea and Febiger, Philadelphia, 1986), pp. 123–145

    Google Scholar 

  • J.H. Wood, G. Catacalos, S.V. Lieberman, A rheological study of the aging of Veegum suspensions. J. Pharm. Sci. 52(4), 354–358 (1963)

    Article  CAS  Google Scholar 

  • M.L. Yao, J.C. Patel, Rheological characterization of body lotions. Appl. Rheol. 11(2), 70 (2001)

    Article  Google Scholar 

  • G. Yu, X. Yan, C. Han, F. Huang, Characterization of supramolecular gels. Chem. Soc. Rev. 42(16), 6697–6722 (2013)

    Article  CAS  Google Scholar 

  • G. Zografi, Physical stability assessment of emulsions and related disperse systems: A critical review. J. Soc. Cosmet. Chem. 33, 345–358 (1982)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 AAPS (American Association of Pharmaceutical Scientists)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, A., Gupta, S.S., Kalluri, H., Lowenborg, M., Bhatia, K., Warner, K. (2019). Rheological Characterization in the Development of Topical Drug Products. In: Langley, N., Michniak-Kohn, B., Osborne, D. (eds) The Role of Microstructure in Topical Drug Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-17355-5_1

Download citation

Publish with us

Policies and ethics