Skip to main content

Adapted Metrics for Codimension One Singular Hyperbolic Flows

  • Conference paper
  • First Online:
New Trends in One-Dimensional Dynamics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 285))

Abstract

For a partially hyperbolic splitting \(T_\Gamma M=E\oplus F\) of \(\Gamma \), a \(C^{1}\) vector field X on a m-manifold, we obtain singular-hyperbolicity using only the tangent map DX of X and its derivative \(DX_{t}\) whether E is one-dimensional subspace. We show the existence of adapted metrics for singular hyperbolic set \(\Gamma \) for \(C^{1}\) vector fields if \(\Gamma \) has a partially hyperbolic splitting \(T_\Gamma M=E\oplus F\) where F is volume expanding, E is uniformly contracted and a one-dimensional subspace.

L.S. is partially supported by Fapesb-JCB0053/2013, PRODOC-UFBA/2014 and CNPq 2017 postdoctoral schoolarship at Universidade Federal do Rio de Janeiro, V.C. is supported by CAPES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Araujo, A. Arbieto, L. Salgado, Dominated splittings for flows with singularities. Nonlinearity 26(8), 2391 (2013)

    Article  MathSciNet  Google Scholar 

  2. V. Araújo, M. J. Pacifico, Three-dimensional flows, volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg (2010). With a foreword by Marcelo Viana

    Google Scholar 

  3. V. Araujo, L. Salgado, Infinitesimal Lyapunov functions for singular flows. Math. Z. 275(3–4), 863–897 (2013)

    Article  MathSciNet  Google Scholar 

  4. V. Araujo, L. Salgado, Dominated splitting for exterior powers and singular hyperbolicity. J. Differ. Equ. 259, 3874–3893 (2015)

    Article  MathSciNet  Google Scholar 

  5. A. Arbieto, Sectional lyapunov exponents. Proc. Am. Math. Soc. 138, 3171–3178 (2010)

    Article  MathSciNet  Google Scholar 

  6. A. Arbieto, L. Salgado, On critical orbits and sectional hyperbolicity of the nonwandering set for flows. J. Differ. Equ. 250, 2927–2939 (2010)

    Article  MathSciNet  Google Scholar 

  7. L. Arnold, Random Dynamical Systems (Springer, Heidelberg, 1998)

    Book  Google Scholar 

  8. C. Bonatti, L.J. Díaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective (Encyclopedia of Mathematical Sciences), vol. 102. Mathematical Physics, III. (Springer, Heidelberg, 2005)

    Google Scholar 

  9. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol. 470. Lecture Notes in Mathematics. (Springer, Heidelberg, 1975)

    Google Scholar 

  10. R. Bowen, D. Ruelle, The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  MathSciNet  Google Scholar 

  11. E.L. Lima, Cálculo Tensorial. Publicações Matemáticas, IMPA (1964)

    Google Scholar 

  12. N. Gourmelon, Adapted metrics for dominated splittings. Ergod. Theory Dynam. Syst. 27(6), 1839–1849 (2007)

    Article  MathSciNet  Google Scholar 

  13. M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds. Lectures Notes in Mathematics, vol. 583. (Springer, Heidelberg, 1977)

    Chapter  Google Scholar 

  14. A. Katok, Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergod Theory Dynam. Syst. 14(4), 757–785 (1994). With the collaboration of Keith Burns

    Article  MathSciNet  Google Scholar 

  15. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Encyclopedia Mathematics and its Applications, vol. 54. (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  16. J. Lewowicz, Lyapunov functions and topological stability. J. Differ. Equ. 38(2), 192–209 (1980)

    Article  MathSciNet  Google Scholar 

  17. R. Metzger, C. Morales, Sectional-hyperbolic systems. Ergod. Theory Dynam. Syst. 28, 1587–1597 (2008)

    Article  MathSciNet  Google Scholar 

  18. C.A. Morales, M.J. Pacifico, E.R. Pujals, Singular hyperbolic systems. Proc. Am. Math. Soc. 127(11), 3393–3401 (1999)

    Article  MathSciNet  Google Scholar 

  19. C.A. Morales, M.J. Pacifico, E.R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. 160(2):375–432 (2004)

    Google Scholar 

  20. S. Newhouse, Cone-fields, domination, and hyperbolicity, in Modern Dynamical Systems and Applications, pp. 419–432. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  21. C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. Studies in Advanced Mathematics. (CRC Press, Boca Raton, 1999)

    Google Scholar 

  22. C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete (Pearson Prentice Hall, Upper Saddle River, NJ, 2004)

    MATH  Google Scholar 

  23. L. Salgado. Sobre hiperbolicidade fraca para fluxos singulares. PhD thesis, UFRJ, Rio de Janeiro, 2012

    Google Scholar 

  24. M. Shub, Global Stability of Dynamical Systems. (Springer, New York, 1987)

    Google Scholar 

  25. W. Tucker. The Lorenz attractor exists. C. R. Acad. Sci. Paris 328(12), 1197–1202 (1999)

    Article  MathSciNet  Google Scholar 

  26. M. Viana, What’s new on Lorenz strange attractor. Math. Intell. 22(3), 6–19 (2000)

    Article  MathSciNet  Google Scholar 

  27. S. Winitzki, Linear Algebra: Via Exterior Products, 1.2 edn. (Lulu.com, Raleigh, 2012)

    Google Scholar 

  28. M. Wojtkowski, Invariant families of cones and Lyapunov exponents. Ergod. Theory Dynam. Syst. 5(1), 145–161 (1985)

    Article  MathSciNet  Google Scholar 

  29. M.P. Wojtkowski, Monotonicity, \(J\)-algebra of Potapov and Lyapunov exponents. in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), vol. 69. Proc. Sympos. Pure Math.. (American Mathematical Society, Providence, 2001), pp. 499–521

    Google Scholar 

Download references

Acknowledgements

L.S. dedicates this article to the memory of Prof. Welington de Melo who taught her the profundity and beauty of hyperbolic dynamics. The authors are deeply grateful to the anonymous referee for the kind analysis of this paper and the excellent suggestions which helped us to improve our work. L.S. is partially supported by Fapesb-JCB0053/2013, PRODOC-UFBA/2014 and CNPq 2017 postdoctoral schoolarship at Universidade Federal do Rio de Janeiro, V.C. is supported by CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Salgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salgado, L., Coelho, V. (2019). Adapted Metrics for Codimension One Singular Hyperbolic Flows. In: Pacifico, M., Guarino, P. (eds) New Trends in One-Dimensional Dynamics. Springer Proceedings in Mathematics & Statistics, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-16833-9_14

Download citation

Publish with us

Policies and ethics