Skip to main content

In-situ Visualization of the Propagation of the Electric Potential in a Human Atrial Model Using GPU

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 979))

Included in the following conference series:

  • 392 Accesses

Abstract

Computational heart-tissue models envelope the solution of non-linear partial and ordinary differential equations. After applying certain discretization methods (finite difference, finite elements) to them for its solution, result in a set of operations between matrices in the order of millions. The outcome of this are programs with high execution times.

The current work simulates a human atrium tissue using the Courtemanche electrical model [1]. The cell pairing is made using the finite difference method and its computational implementation was made using the Armadillo C++ library [2], for the CPU version and the acceleration was made through the CUDA library [3] on a nVidia Tesla K40 card.

Additionally the visualization process was made using Paraview-Catalyst [4], two computing nodes permits that the execution process of the numerical method runs on a node while the other node makes the visualization simultaneously.

A novel process to make atrium human visualizations was implemented, a 200X acceleration was achieved using CUDA and Arrayfire [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Courtemanche, M.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. The American Physiological Society (1998)

    Google Scholar 

  2. Sanderson, C., Curtin, R.: Armadillo: C++ linear algebra library (2010). https://www.nvidia.com

  3. nvidia

    Google Scholar 

  4. kitware. Paraview catalyst, August 2016

    Google Scholar 

  5. ArrayFire. https://arrayfire.com/

  6. Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theoret. Biol. 253(3), 544–560 (2008)

    Article  MathSciNet  Google Scholar 

  7. Rush, S., Larsen, H.: A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. BME 25(4), 389–392 (1978)

    Article  Google Scholar 

  8. Sundnes, J., Artebrant, R., Skavhaug, O., Tveito, A.: A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56(10), 2546–2548 (2009)

    Article  Google Scholar 

  9. Perego, M., Veneziani, A.: An efficient generalization of the rush-larsen method for solving electro-physiology membrane equations. Electron. Trans. Numer. Anal. 35, 234–256 (2009)

    MathSciNet  MATH  Google Scholar 

  10. de Barros, B.G., Oliveira, R.S., Meira, W., Lobosco, M., dos Santos, R.W.: Simulations of complex and microscopic models of cardiac electrophysiology powered by Multi-GPU platforms. Comput. Math. Methods Med. 2012, 1–13 (2012)

    Article  MathSciNet  Google Scholar 

  11. Nimmagadda, V.K., Akoglu, A., Hariri, S., Moukabary, T.: Cardiac simulation on multi-GPU platform. J. Supercomput. 59(3), 1360–1378 (2012)

    Article  Google Scholar 

  12. Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol., 1573–1589 (2004)

    Google Scholar 

  13. Marcotte, C.D., Grigoriev, R.O.: Implementation of PDE models of cardiac dynamics on GPUs using OpenCL. J. Comput. Phys. (2013)

    Google Scholar 

  14. Garcia-Molla, V.M., et al.: Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Comput. Biol. Med. 44, 15–26 (2014)

    Article  Google Scholar 

  15. Xia, Y., Wang, K., Zhang, H.: Parallel optimization of 3D Cardiac Electrophysiological Model using GPU. Comput. Math. Methods Med. 1–10, 2015 (2015)

    MATH  Google Scholar 

  16. Zhao, C.: Computer simulation implementations and optimization of the right atrium of the heart based on GPU, vol. 5 (2015)

    Google Scholar 

  17. Reumann, M., et al.: Towards run time visualization in cardiac modeling. In: Dössel, O., Schlegel, W.C. (eds.) Towards Run Time Visualization in Cardiac Modeling, vol. 25/4, pp. 999–1002. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03882-2_266

    Chapter  Google Scholar 

  18. Mazzeo, M.D., Manos, S., Coveney, P.V.: In situ ray tracing and computational steering for interactive blood flow simulation. Comput. Phys. Commun. 181(2), 355–370 (2010)

    Article  Google Scholar 

  19. Kalpana, K.: Parallel visualization of a 3D heart model in an heterogeneous computing environment. Ph.D. thesis, Malaya University (2010)

    Google Scholar 

  20. Rivi, M., Calori, L., Muscianisi, G., Slavnic, V.: In-situ visualization: state-of-the-art and some use cases. PRACE White Paper, pp. 1–18 (2012)

    Google Scholar 

  21. Moreland, K., Larsen, M., Childs, H.: Visualization for exascale: portable performance is critical. Supercomput. Front. Innovations 2(3), 67–75 (2015)

    Google Scholar 

  22. Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016)

    Article  Google Scholar 

  23. Kitware: Paraview catalyst

    Google Scholar 

  24. Kitware: Paraview

    Google Scholar 

  25. Organización Mundial de la Salud. Cardiovascular diseases, September (2016)

    Google Scholar 

  26. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  27. nVidia: About cuda, November 2015

    Google Scholar 

  28. Yalamanchili, P., et al.: ArrayFire - a high performance software library for parallel computing with an easy-to-use API (2015)

    Google Scholar 

  29. Osorio, J.: Implementación modelo eléctrico celular cardíaco

    Google Scholar 

  30. kitware: Visualization toolkit (vtk), June 2016

    Google Scholar 

  31. John Roy, M., Saurabh, K.:. Sinus Node and Atrial Arrhythmias. Circulation - American Heart Association, pp. 10 (2016)

    Google Scholar 

  32. nvidia: nvidia corporation

    Google Scholar 

Download references

Acknowledgements

The authors thank the nVidia company [32] for supporting the GPU Education Center of the Universidad Tecnologica de Pereira which is managed by the research group Sirius, part of the Systems Engineering program [2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Osorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osorio, J.H., Castano, A.P., Henao, O., Hincapie, J. (2019). In-situ Visualization of the Propagation of the Electric Potential in a Human Atrial Model Using GPU. In: Meneses, E., Castro, H., Barrios Hernández, C., Ramos-Pollan, R. (eds) High Performance Computing. CARLA 2018. Communications in Computer and Information Science, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-030-16205-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16205-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16204-7

  • Online ISBN: 978-3-030-16205-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics