Skip to main content

Oxygenation of Early Atmosphere and Potential Stratigraphic Records from India

  • Chapter
  • First Online:
Geodynamics of the Indian Plate

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 990 Accesses

Abstract

Oxygenation of atmosphere had a profound role in the evolution of life from primitive anoxygenic heterotrophic life forms to oxygenic photoautotrophs and eventually to multicellular organized plant and animal kingdom. Plethora of geological and geochemical evidences particularly the occurrences of pyritiferous- and uraniferous-reduced paleoplacers, distribution of BIF through ages, Fe-depleted reduced paleosols and more importantly the mass-independent multiple sulphur isotope fractionation prior to 2.4 Ga great oxidation event (GOE) collectively suggest an oxygen-deficient atmosphere during the Archean. Recent research from paleosols older than 2.4 Ga and coeval marine sediments using REE-distribution pattern, redox-sensitive trace elements and fractionation of their isotopes indicates more than one attempt of pre-GOE oxygenation. More case studies from well-preserved paleosols and marine sedimentary sinks for trace metals from the Archean would bridge the gap in the record from pre-GOE to GOE oxygenation history. Peninsular India with nearly continuous stratigraphic successions from Paleoarchean to Paleoproterozoic time interval may be potential to study the pre-GOE to GOE transition of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142

    Article  Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:903–1906

    Article  Google Scholar 

  • Bandyopadhyay PC, Eriksson PG, Roberts RJ (2010) A vertic paleosol at the Archean–Proterozoic contact from the Singhbhum–Orissa craton, eastern India. Precambrian Res 177:277–290

    Article  Google Scholar 

  • Banerjee DM (1996) A lower proterozoic paleosol at BGC–Aravalli boundary in south-central Rajasthan, India. J Geol Soc India 48:277–288

    Google Scholar 

  • Barley ME, Bekker A, Krapez B (2005) Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett 238:156–171

    Article  Google Scholar 

  • Bekker AD (2014) Great oxygenation event. In: Amils R. et al. (eds) Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317–318:295–230

    Article  Google Scholar 

  • Bekker A, Holland HD, Wang L, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  Google Scholar 

  • Berkner LV, Marshall LC (1965) On the origin and rise of oxygen concentration in the Earth’s atmosphere. J Atmos Sci 22:225–261

    Article  Google Scholar 

  • Beukes NJ, Dorland H, Gutzmer J, Nedachi M, Ohmoto H (2002) Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30:491–494

    Article  Google Scholar 

  • Beukes NJ, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Rev Economic Geol 15:5–47

    Google Scholar 

  • Beukes NJ, Klein C (1992) Models for iron-formation deposition. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. University of Cambridge, Cambridge, pp 147–151

    Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    Article  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Nature 255:74–77

    Google Scholar 

  • Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental crust ~3.5 billion years ago in the Pilbara craton of Australia. Nature 375:574–577

    Article  Google Scholar 

  • Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-myr Swazi-land Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491

    Article  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  Google Scholar 

  • Canfield DE, Poulton SW, Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95

    Article  Google Scholar 

  • Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early life. Science 293:839–843

    Article  Google Scholar 

  • Chadwick B, Vasudev VN, Hegde GV (2000) The Dharwar craton, southern India, interpreted as the result of Late Archean oblique convergence. Precambrian Res 99:91–111

    Article  Google Scholar 

  • Clemmey H, Badham N (1982) Oxygen in the Precambrian atmosphere: an evolution of the geological evidence. Geology 10:141–146

    Article  Google Scholar 

  • Cloud P (1968) Atmospheric and hydrospheric evolution on the primitive Earth. Science 160:729–736

    Article  Google Scholar 

  • Cloud PE Jr (1972) A working model of the primitive Earth. Am J Sci 272:537–548

    Article  Google Scholar 

  • Cox G, Lyons T, Mitchell R, Hasterok D, Gard M (2018) Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet Sci Lett 489:28–36

    Article  Google Scholar 

  • Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538

    Article  Google Scholar 

  • Des Marais DJ (2000) Evolution: when did photosynthesis emerge on Earth? Science 289:1703–1705

    Google Scholar 

  • Dimroth E, Kimberley MM (1976) Precambrian atmospheric oxygen: evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron. Can J Earth Sci 13:1161–1185

    Article  Google Scholar 

  • Dymek RF, Klein C (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, west Greenland. Precambrian Res 39:247–302

    Article  Google Scholar 

  • Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Article  Google Scholar 

  • Farquhar J, Savarino J, Airieau S, Thiemens MH (2001) Observation of wavelength-sensitive mass-dependent sulfur isotopes effects during SO2 photolysis: implication for the early Earth atmosphere. J Geophys Res 106:32829–32839

    Article  Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13

    Article  Google Scholar 

  • Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107:11–36

    Article  Google Scholar 

  • Frei R, Polat A (2013) Chromium isotope fractionation during oxidative weathering—implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precambrian Res 224:434–453

    Article  Google Scholar 

  • Garrels RM, Perry EA Jr, Mackenzie FT (1973) Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ Geol 68:1173–1179

    Article  Google Scholar 

  • Gay AL, Grandstaff DE (1979) Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Res 12:349–373

    Article  Google Scholar 

  • Golani PR (1989) Sillimanite—corundum deposits of Sonapahar, Meghalaya, India: a metamorphosed Precambrian paleosol. Precambrian Res 43:175–189

    Article  Google Scholar 

  • Grandstaff DE (1974) Microprobe analyses of uranium and thorium in uraninite from the Witwatersrand, South Africa, and Blind River, Ontario, Canada. Trans Geol South Africa 77:291–294

    Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402

    Article  Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 93–134

    Google Scholar 

  • Hayes JM, Lambert IB, Strauss H (1992) The sulfur-isotopic record. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 129–132

    Google Scholar 

  • Holland HD (1962) Model for the evolution of the Earth’s atmosphere. In: AEJ E, James HL, Leonard BF (eds) Petrologic studies: a volume in honor of A.F. Buddington. Geological Society of America, Boulder, CO, pp 447–477

    Google Scholar 

  • Holland HD (1994) Early Proterozoic atmospheric change. In: Bengston S (ed) Early life on earth. Columbia University Press, New York, pp 237–244

    Google Scholar 

  • Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Article  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc B 361:903–915

    Article  Google Scholar 

  • Holland HD, Beukes NJ (1990) A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am J Sci 290-A:1–34

    Google Scholar 

  • Johnson IJ, Watanabe Y, Yamaguchi K, Hamasaki H, Ohmoto H (2008) Discovery of the oldest (~3.4 Ga) lateritic paleosols in the Pilbara Craton Western Australia. Geol Soc Am 40:143. Abstracts with Programs

    Google Scholar 

  • Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10):867–870

    Article  Google Scholar 

  • Kasting J (2013) What caused the rise of atmospheric O2? Chem Geol 362:13–25

    Article  Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257

    Article  Google Scholar 

  • Kaufman AJ, Johnston DT, Farquhar J, Masterson A, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    Article  Google Scholar 

  • Knoll AH (1992) Biological and biogeochemical preludes to the Ediacaran radiation. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum, New York, pp 53–84

    Chapter  Google Scholar 

  • Knoll AH (2003) The geological consequences of evolution. Geobiology 1(1):3–14

    Article  Google Scholar 

  • Knoll AH, Bauld J (1989) The evolution of ecological tolerance in prokaryotes. Trans R Soc Edin Earth 80:209–223

    Article  Google Scholar 

  • Kump LR, Kasting JF, Barley ME (2000) The rise of atmospheric oxygen and the “upside down”Archean mantle. Geochem Geophys Geosyst 2, https://doi.org/10.1029/2000GC000114

    Article  Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278

    Article  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    Article  Google Scholar 

  • Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE (2016) Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv 13(2, 5):e1600134. https://doi.org/10.1126/sciadv.1600134

    Article  Google Scholar 

  • Macfarlane AW, Danielson A, Holland HD (1994) Geology and major and trace element chemistry of late Archean weathering profiles in the Fortescue Group, Western Australia: implications for atmospheric PO2. Precambrian Res 65:297–317

    Article  Google Scholar 

  • Mohanty SP, Nanda S (2016) Geochemistry of a paleosol horizon at the base of the Sausar Group, central India: implications on atmospheric conditions at the Archean-Paleoproterozoic boundary. Geosci Front 7:759–773

    Article  Google Scholar 

  • Mukhopadhyay J (2019) Archean banded iron formations of India. Earth Sci Rev, 102927

    Article  Google Scholar 

  • Mukhopadhyay J, Misra B, Chakrabarti K, De S, Ghosh G (2016) Uraniferous paleoplacers of the Mesoarchean Mahagiri Quartzite, Singhbhum craton, India: depositional controls, nature and source of >3.0 Ga detrital uraninites. Ore Geol Rev 72:1290–1306

    Article  Google Scholar 

  • Mukhopadhyay J, Crowley QC, Ghosh S, Ghosh G, Chakrabarti K, Misra B, Heron K, Bose S (2014) Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India. Geology 42:923–926

    Article  Google Scholar 

  • Mukhopadhyay J, Ghosh G, Zimerman U, Guha S, Mukherjee T (2012) 3.51 Ga bimodal volcanics-BIF-ultramafic succession from Singhbhum Craton: implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geosci Front 47:284–311

    Google Scholar 

  • Mukhopadhyay J, Gutzmer J, Beukes NJ, Bhattacharya HN (2008) Geology and genesis of the major banded iron formation-hosted high-grade iron ore deposits of India. SEG Rev 15:291–316

    Google Scholar 

  • Naqvi SM (2005) Geology and evolution of the Indian plate (from Hadean to Holocene- 4 Ga to 4 Ka). Capital Publishing Company, New Delhi. 450 p

    Google Scholar 

  • Ohmoto H (1996) Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology 24:1135–1138

    Article  Google Scholar 

  • Ohmoto H (1997) When did the Earth’s atmosphere become oxic? Geochem News 93(12-13):26–27

    Google Scholar 

  • Ohmoto H (2004) Archean atmosphere, hydrosphere, and biosphere. In: Eriksson P et al (eds) The Precambrian earth: tempos in Precambrian, Development in Precambrian geology, vol 12. Elsevier, Amsterdam, pp 361–388

    Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Article  Google Scholar 

  • Pandit MK, Helga DW, Chauhan NK (2008) Paleosol at the Archean—Proterozoic contact in NW India revisited: evidence for oxidizing conditions during paleo-weathering? J Earth Syst Sci 117:201–209

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212

    Article  Google Scholar 

  • Philippot P, Teitler Y, Gérard M, Cartigny P, Muller E, Assayag N, Le Hir G, Fluteau F (2013) Isotopic and mineralogical evidence for atmospheric oxygenation in 2.76 Ga old paleosols. Mineral Mag 77:1965

    Google Scholar 

  • Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014) Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat Geosci 7:283–286

    Article  Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    Article  Google Scholar 

  • Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166

    Article  Google Scholar 

  • Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–118

    Article  Google Scholar 

  • Reinhard CT, Raiswell R, Scott C, Anbar AD, Lyons TW (2009) A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326:713–716

    Article  Google Scholar 

  • Roscoe SM (1957) Geology and uranium deposits, Quirke Lake-Elliot Lake, Blind River area, Ontario. Geol Surv Can 56:7

    Google Scholar 

  • Roscoe SM (1973) The Huronian Supergroup, a Paleoamphibian succession showing evidence of atmospheric evolution. In: Young GM (ed) Huronian stratigraphy and sedimentation. Geological Association of Canada, St. John’s, pp 31–47

    Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Article  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland: indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    Article  Google Scholar 

  • Roy A, Ramachandra HM, Bandopadhyay BK (2001) Supracrustal belts and their significance in the crustal evolution of central India. Geol Sur India Spec Publ 55:361–380

    Google Scholar 

  • Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621–672

    Article  Google Scholar 

  • Satkoski AM, Beukes NJ, Weiqiang L, Beard BL (2015) A redox-stratified ocean 3.2 billion years ago. Earth Planetary Sci Lett 430:43–53

    Article  Google Scholar 

  • Schidlowski M (1981) Uraniferous constituents of the Witwatersrand conglomerates: ore-microscopic observations and implications for the Witwatersrand metallogeny. U S Geol Surv Prof Pap 1161:N1–N29

    Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  Google Scholar 

  • Shaw GH (2014) Evidence and arguments for methane and ammonia in Earth’s earliest atmosphere and an organic compound–rich early ocean. In: Shaw GH (ed) Earth’s early atmosphere and surface environment, Geological Society of America Special Paper, vol 504. Princeton University Press, Princeton, pp 1–10

    Chapter  Google Scholar 

  • Smith ND, Minter W (1980) Sedimentological controls of gold and uranium in Witwatersrand paleoplacers. Econ Geol 75:1–14

    Article  Google Scholar 

  • Sreenivas B, Roy AB, Srinivasan R (2001) Geochemistry of sericite deposits at the base of the Paleoproterozoic Aravalli supergroup, Rajasthan, India: evidence for metamorphosed and metasomatised Precambrian. Paleosol Proc Indian Acad Sci (Earth Planet Sci) 110:39–61

    Google Scholar 

  • Sreenivas B, Srinivasan R (1994) Identification of paleosols in the Precambrian metapelitic assemblages of Peninsular India—a major element geochemical approach. Curr Sci 67:89–94

    Google Scholar 

  • Wall HD, Pandit MK, Chauhan NK (2012) Paleosol occurrences along the Archean–Proterozoic contact in the Aravalli craton, NW India. Precambrian Res 216–219:120–131

    Article  Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400–3,500 myr old from the North-Pole area, Western-Australia. Nature 284:443–445

    Article  Google Scholar 

  • Williford KH, Van Kranendonk MJ, Ushikubo T, Kozdon R, Valley JW (2011) Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim Cosmochim Acta 75:5686–5705

    Article  Google Scholar 

  • Yang W, Holland HD (2003) The Hekpoort paleosol profile in strata 1 at Gaborone, Botswana: soil formation during the great oxidation event. Am J Sci 03:187–220

    Article  Google Scholar 

  • Zahnle KJ, Catling DC, Claire MW (2013) The rise of oxygen and the hydrogen hourglass. Chem Geol 362:26–34

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the series editors Profs. S.K. Tandon and Neal S. Gupta for inviting this article. The author acknowledges financial assistance from FRPDF grant from the Presidency University. DST-FIST and UGC-CAS laboratory facility at Department of Geology, Presidency University has been used.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhopadhyay, J. (2020). Oxygenation of Early Atmosphere and Potential Stratigraphic Records from India. In: Gupta, N., Tandon, S. (eds) Geodynamics of the Indian Plate. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-15989-4_5

Download citation

Publish with us

Policies and ethics