Skip to main content

Passive Components

  • Chapter
  • First Online:
Silicon Analog Components
  • 1079 Accesses

Abstract

Integrated components that do not amplify current or voltage signals belong to a family of devices referred to as passive components. This includes resistors, capacitors, varactors, and inductors. This chapter describes passive components that can be integrated in a CMOS technology. The design and characteristics of different types of resistors, capacitors, varactors, and spiral inductors are described, followed by simple examples of their applications in analog circuits. Passive components, in particular capacitor and resistors, occupy a substantial area of the chip (Fig. 1.12). They should be optimized by minimizing the area while maintaining the desired electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Kato, T. Ono, Y. Amemiya, Electrical trimming of polycrystalline silicon resistors and its application to analog ICs. IEEE Trans. Electron Dev 27(11), 2194–2195 (1979)

    Article  Google Scholar 

  2. W.A. Lane, G.T. Wrixon, The design of thin-film polysilicon resistors for analog applications. IEEE Trans. Electron Dev. 36(4), 738–744 (1989)

    Article  Google Scholar 

  3. F. Hegner, The industrial production of high-quality nickel-chromium resistors with controlled temperature coefficient of resistance. Thin Solid Films 57(2), 359–362 (1979)

    Article  Google Scholar 

  4. G. Nocerino, K.E. Singer, The electrical and compositional structure of thin Ni-Cr films. Thin Solid Films 57(2), 343–348 (1979)

    Article  Google Scholar 

  5. M.A. Bayne, Al-doped Ni-Cr for temperature coefficient of resistance control in hybrid thin-film resistors. J. Vac. Sci. Technol. A4(6), 3142–3145 (1986)

    Article  Google Scholar 

  6. F. Wu, A.W. McLaurin, K.E. Henson, D.G. Managhan, S.L. Thomasson, The effects on the process parameters on the electrical and microstructure characteristics of the CrSi thin resistor films: Part I. Thin Solid Films 332(1–2), 418–422 (1998)

    Article  Google Scholar 

  7. D. Nachrodt, U. Pachen, A. Ten Have, H. Vogt, Ti/Ni(80%)Cr(20%) thin-film resistor with near zero temperature coefficient of resistance for integration in a standard CMOS process. IEEE Electron Dev. Lett. 29(3), 212–214 (2008)

    Article  Google Scholar 

  8. P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Sipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz, M. Miller, Integration of thin-film MIM capacitors and resistors into copper metallization based RF-CMOS and BiCMOS technologies. IEEE IEDM Tech. Digest, 153–156 (2000)

    Google Scholar 

  9. R.W. Berry, P.M. Hall, M.T. Harris, Thin Film Technology (Van Nostrand, 1968)

    Google Scholar 

  10. S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981), p. 43

    Google Scholar 

  11. M.G. Holland, Phonon scattering in semiconductors from thermal conductivity studies. Phys. Rev. 134, A471 (1964)

    Article  Google Scholar 

  12. B.H. Armstrong, The physics of SiO2 and its interfaces, in Thermal Conductivity in SiO2, ed. by S. T. Pantelides, (Pargamon Press, New York, 1978)

    Chapter  Google Scholar 

  13. C.Y. Ho, R.W. Powell, P.E. Liley, Thermal Conductivity of the Elements, a Comprehensive Review (American Chemical Society and American Institute of Physics, New York, 1975)

    Google Scholar 

  14. T.I. Kamins, Hall mobility in chemically deposited polycrystalline silicon. J. Appl. Phys. 42(11), 4357–4365 (1971)

    Article  Google Scholar 

  15. J.Y. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)

    Article  Google Scholar 

  16. H.M. Chuang, S.F. Tsai, K.B. Thei, S.F. Tsai, W.C. Li, Temperature-dependent characteristics of diffused and polysilicon resistors. IEEE Trans. Electron. Dev. 50(5), 1413–1415 (2003)

    Article  Google Scholar 

  17. D.N. Kouvatsos, A.T. Voutsas, M.K. Hatalis, High-performance thin-film transistors in large grain size polysilicon deposited by thermal decomposition of disilane. IEEE Trans. Electron Dev. 43(9), 1399–1406 (1996)

    Article  Google Scholar 

  18. M. Koda, Y. Shida, J. Kawaguchi, Y. Kaneko, Improving gate oxide integrity in p+pMOSFET by using large grain size polysilicon gate. IEEE IEDM Tech. Digest, 471–474 (1993)

    Google Scholar 

  19. N.C.-C. Lu, L. Gerzberg, C.-Y. Lu, J.D. Meindl, Modeling and optimization of monolithic polycrystalline silicon resistors. IEEE Trans. Electron Dev. ED-28(7), 818–830 (1981)

    Article  Google Scholar 

  20. T.A. Carbone, P. Plourde, E. Karagiannis, Correlation of ellipsometric volume fraction to polysilicon grain size from transmission electron microscopy. IEEE/SEMI ASMC, 359–367 (1999)

    Google Scholar 

  21. M.M. Mandurah, K.C. Saraswat, T.I. Kamins, Phosphorus doping of low pressure chemically vapor-deposited silicon films. J. Electrochem. Soc. 126(8), 1019–1023 (1979)

    Article  Google Scholar 

  22. N.C.C. Lu, L. Gerzberg, J.D. Meindl, A quantitative model of the effect of grain size on the resistivity of polycrystalline silicon resistors. Electron Dev. Lett. EDL-1(3), 38–41 (1980)

    Article  Google Scholar 

  23. M.E. Cowher, T.O. Sedgwick, Chemical vapor deposited polycrystalline silicon. J. Electrochem. Soc. 119(11), 1565–1570 (1972)

    Article  Google Scholar 

  24. A.L. Fripp, Dependence of resistivity on the doping level of polycrystalline silicon. J. Appl. Phys. 46(3), 1240–1244 (1975)

    Article  Google Scholar 

  25. P. Rai-Choudhury, P.L. Hower, Growth and characterization of polycrystalline silicon. J. Electrochem. Soc. 120(12), 1761–1766 (1971)

    Article  Google Scholar 

  26. G. Baccarani, B. Riccò, Transport properties of polycrystalline silicon films. J. Appl. Phys. 49(11), 5565–5570 (1978)

    Article  Google Scholar 

  27. M. Nakabayshi, M. Ikegami, T. Daikoku, Influence of hydrogen on electrical characteristics of poly-Si resistor. Jpn. J. Appl. Phys. 32(Part 1 (9A)), 3734–3738 (1993)

    Article  Google Scholar 

  28. M.M. Mandurah, K. Saraswat, T.I. Kamins, A model for conduction in polycrystalline silicon – Part II: Comparison of Theory and experiment. IEEE Trans. Electron Dev. ED-28(10) (1981)

    Article  Google Scholar 

  29. W.-C. Liu, K.-B. Thei, H.-M. Chuang, K.-Y. Lin, C.-C. Cheng, Y.-S. Ho, C.-Y. Su, S.-C. Wong, C.-H. Lin, C.-H. Dias, Characterization of polysilicon resistors in sub-0.25μm CMOS ULSI applications. IEEE Electron Dev. Lett. 22(7), 318–320 (2001)

    Article  Google Scholar 

  30. L.J. Van der Pauw, A method of measuring specific resistivity and Hall effect of disc of arbitrary shape. Phillips Res. Reports 13, 1–9 (1958)

    Google Scholar 

  31. C.M. Osburn, J.Y. Tsai, Q.F. Wang, J. Rose, A. Cowen, Predict 1.6: Modeling of metal silicide processes. J. Electrochem. Soc. 140(12), 3660–3670 (1993)

    Article  Google Scholar 

  32. M.S. Raman, T. Kifle, E. Bhattacharya, K.N. Bhat, Physical model for the resistivity and temperature coefficient of resistivity in heavily doped Polysilicon. IEEE Trans. Electron Dev. 53(8), 2006 (1885-1892)

    Google Scholar 

  33. D.W. Lee, T.M. Roh, H.S. Park, J. Kim, J.G. Koo, D.Y. Kim, Fabrication technology of polysilicon resistors using novel mixed process for analogue CMOS application. IEEE Electronic Lett. 35(7), 803–804 (1999)

    Google Scholar 

  34. W. Tatinian, E. Simoen, N. Ouassif, B. Desoete, R. Gillon, P. Pannier, Self-heating based model for polysilicon resistors. IEEE Midwest Symp. Circuits and Systems, MWSCAS, Tech. Digest 3, 1337–1339 (2004)

    Google Scholar 

  35. P. Steinmann, E. Beach, W. Meinel, A. Chatterjee, D. Weiser, R. Bucksch, W. Tang, Simple analytical model of the thermal resistance of resistors in integrated circuits. IEEE Trans. Electron Dev. 57(5), 1029–1036 (2010)

    Article  Google Scholar 

  36. N.C.C. Lu, L. Gerzberg, C.Y. Lu, D. Meindl, A conduction model for semiconductor grain boundary- semiconductor barriers in polycrystalline silicon films. IEEE Trans. Electron Dev. ED-30, 137–149 (1983)

    Article  Google Scholar 

  37. Y. Amemiya, T. Ono, K. Kato, Electrical trimming of heavily doped polycrystalline silicon resistors. IEEE ED-26(11), 1138–1142 (1979)

    Google Scholar 

  38. S. Das, S.K. Lahiri, Electrical trimming of ion-beam sputtered polysilicon resistors by high current pulses. IEEE Trans. Electron Dev. 41(8), 1429–1435 (1994)

    Article  Google Scholar 

  39. K. Kato, T. Ono, Y. Amemiya, A physical mechanism of current-induced resistance decrease in heavily doped polysilicon resistors. IEEE Trasn. Electron Dev. ED-29(8), 1156–1161 (1982)

    Article  Google Scholar 

  40. K. Kato, T. Ono, Y. Amemiya, A monolithic 14 bit D/a converter fabricated with a new trimming technique (DOT). IEEE J. Solid State Circuits 19(5), 802–807 (1984)

    Article  Google Scholar 

  41. M.I. Elmasry, Capacitance calculations in MOSFET VLSI. IEEE Electron Dev. Lett. EDL-3(1), 6–7 (1982)

    Article  Google Scholar 

  42. R. Shrivastava, K. Fitzpatrick, A simple model for the overlap capacitance of a VLSI MOS device. IEEE Trans. Electron Dev. ED-29(12), 1982 (1870-1875)

    Google Scholar 

  43. K. Suzuki, Parasitic capacitance of sub-micrometer MOSFETs. IEEE Trans. Electron. Dev. 46(9), 1999 (1895-1900)

    Google Scholar 

  44. A. Ito, Modeling of voltage-dependent diffused resistors. IEEE Trasn. Electron Dev. 44(12), 2300–2302 (1997)

    Article  Google Scholar 

  45. C.C. McAndrew, T. Bettinger, Robust parameter extraction for the R3 nonlinear resistor model for diffused and poly resistors. IEEE Trans. Semiconductor Manufacturing 25(4), 255–263 (2012)

    Article  Google Scholar 

  46. P. Steinmann, S.M. Stuart, R. Higgins, Controlling the TCR of thin film resistors. Euro. Dev. Res. Conf., 451–453 (2000)

    Google Scholar 

  47. C.A. Neugebauer, M.B. Webb, Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 33, 74–82 (1962)

    Article  Google Scholar 

  48. J.R. Sambles, T.W. Preist, The effects of surface scattering upon resistivity. J. Phys. F 12, 1982 (1971-1987)

    Google Scholar 

  49. P. Fehlhaber, Laser trimming of SiCr thin-film resistors. IEEE IEDM Tech. Digest, 9–10 (1969)

    Google Scholar 

  50. R.H. Wagner, Functional laser trimming: An overview. Laser Processing of Semiconductors and Hybrids, SPIE Proceedings 611, 8–17 (1986)

    Article  Google Scholar 

  51. M.J. Mueller, W. Mickanin, Functional laser trimming of thin film resistors on silicon IC. Laser Processing of Semiconductors and Hybrids, SPIE Proceedings 611, 70–83 (1986)

    Article  Google Scholar 

  52. A.C. Adams, in Dielectric and Polysilicon Film Deposition, VLSI Technology, ed. by S. M. Sze, 2nd edn., (McGraw-Hill, 1988), pp. 259–263

    Google Scholar 

  53. J.L. McCreary, Matching properties, and voltage and temperature dependence of MOS capacitors. IEEE J. Solid State Circuits SC-16(6), 608–616 (1981)

    Article  Google Scholar 

  54. J.W. Fattaruso, M. De Wit, G. Warwar, K.S. Tan, R.K. Hester, The effect of dielectric relaxation on charge-redistribution a/D converters. IEEE J. Solid State Circuits 25(6), 1550–1561 (1990)

    Article  Google Scholar 

  55. K. Hyyppä, Dielectric absorption in memory capacitors. IEEE Trans. Instrum. Meas. 21(1), 53–56 (1972)

    Article  Google Scholar 

  56. J.C. Kuenen, G.C.M. Meijer, Measurement of dielectric absorption of capacitors and analysis of its effects on VCO. IEEE Trans. Instrum. Meas. 45(1), 89–97 (1996)

    Article  Google Scholar 

  57. C. Iorga, Compartmental analysis of dielectric absorption in capacitors. IEEE Trans. Dielectrics 7(2), 187–192 (2000)

    Article  Google Scholar 

  58. T.I. Liou, C.S. Teng, N+−poly-to-n+−silicon capacitor structure for single poly analog CMOS and BiCMOS. IEEE Trans. Electron Dev. 36(9), 1620–1628 (1989)

    Article  Google Scholar 

  59. S.A.S. Onge, S.G. Franz, A.F. Puttlitz, A. Kalinoski, B.E. Johnson, B. El-Kareh, Design pf precision capacitors for analog applications. IEEE Components, Hybrids, and Manufacturing Technology 15(6), 1064–1071 (1992)

    Article  Google Scholar 

  60. P.K. Hurley, L. Wall, A. Mathewson, Double Polysilicon capacitors in 1 μm analogue CMOS technology. European Solid-State Device Research Conference, ESSDERC, 569–572 (1993)

    Google Scholar 

  61. S.G. Lee, J.T. Lee, J.K. Choi, High-Q poly-to-poly capacitor for RF integrated circuits. Electronics Lett. 37(1), 25–26 (2001)

    Article  Google Scholar 

  62. C. Kaya, H. Trigelar, J. Paterson, M. De Wit, J. Fattsruso, R. Hester, S. Kiriaki, K.S. Tan, F. Tsay, Polycide/metal capacitors for high precision analog a/D converters. IEEE IEDM Tech. Digest, 782–785 (1988)

    Google Scholar 

  63. J.A. Babcock, S.G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, B. El-Kareh, Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics. IEEE Trans. Electron Dev. 22(5), 230–232 (2001)

    Article  Google Scholar 

  64. C.H. Ng, C.S. Ho, S.F.S. Chu, S.C. Sun, MIM capacitor integration for mixed-signal/RF applications. IEEE Trans. Electron Dev. 52(7), 1399–1409 (2005)

    Article  Google Scholar 

  65. K. Stein, J. Kocis, G. Hueckel, E. Eid, T. Bartush, R. Groves, N. Greco, D. Harame, T. Tewksbury, High reliability metal insulator metal capacitors for silicon germanium analog applications. IEEE BCTM Tech. Digest, 191–194 (2007)

    Google Scholar 

  66. C.N. Ng, K.W. Chew, S.F. Chu, Characterization and comparison of PECVD silicon nitride and silicon Oxynitride dielectric for MIM capacitors. IEEE Electron Dev. Lett. 24(8), 506–508 (2003)

    Article  Google Scholar 

  67. T. Yoshitomi, Y. Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H.S. Momose, K. Kasai, K. Ishimaru, F. Matruoka, Y. Katsumata, M. Kinogawa, H. Iwai, High performance MIM capacitor for RF BiCMOS/CMOS LSIs. IEEE BCTM Tech. Digest, 133–136 (1999)

    Google Scholar 

  68. M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, K. Stein, A high reliability metal insulator metal capacitor for 0.18 μm copper technology. IEEE IEDM Tech. Digest, 157–160 (2000)

    Google Scholar 

  69. R. Liu, C.Y. Lin, E. Harris, S. Merchant, S.W. Downey, G. Weber, N.A. Ciampa, W.T. Warren, Y.C. Lai, M.D. Morris, J.E. Bowe, J.F. Miner, J. Frackoviak, W. Mansfield, D. Barr, R. Keller, C.P. Chang, C.S. Pai, S.N. Rogers, R. Gregor, Single mask metal-insulator-metal (MIM) capacitor with copper damascene metallization for sub-0.18mm mixed mode signal and system-on-a-chip (SoC) applications. IEEE IITC, 111–113 (2000)

    Google Scholar 

  70. R. Mahnkopf, K.H. Allers, M. Armacost, A. Augustin, J. Barth, G. Brase, R. Busch, E. Demm, G. Dietz, B. Flietner, G. Friese, F. Grellner, K. Han, R. Hannon, H. Ho, M. Hoinkis, K. Holloway, T. Hook, S. Iyer, P. Kim, G. Knoblinger, B. Lemaitre, G. Lin, R. Mih, W. Neumueller, J. Pape, O. Prigge, N. Robson, N. Rovedo, T. Schafbauer, T. Schiml, K. Schruefer, S. Srinivasan, M. Setter, F. Towler, P. Wensley, C. Wann, R. Wong, R. Zoellner, B. Chen, ‘System on a Chip’ technology platform for 0.18 μm digital, mixed signal & eDRAM applications. IEEE IEDM Tech. Digest, 849–842 (1999)

    Google Scholar 

  71. P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Oetras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tatabbia, H. Thibieroz, M. Miller, Integration of thin film MIM capacitors and resistors into copper metallization based RF-CMOS and bi-CMOS technologies. IEEE IEDM Tech. Digest, 153–156 (2000)

    Google Scholar 

  72. R. Henderson, P. Zurcher, A. Duvallet, C. Happ, M. Petras, M. Raymond, T. Rommel, D. Roberts, B. Steimle, S. Straub, T. Sparks, M. Tarabbia, M. Miller, Tantalum nitride thin film resistors for integration into copper metallization based TF-CMOS and BiCMOS technology platforms. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Tech. Digest, 71–74 (2001)

    Google Scholar 

  73. P. Riess, P. Baumgartner, Temperature dependent dielectric absorption of MIM capacitors: RF characterization and modeling. ESSDERC, 459–462 (2006)

    Google Scholar 

  74. H. Hu, C.X. Zhu, Y.F. Lu, M.F. Li, B.J. Cho, W.K. Choi, A high-performance MIM capacitor using HfO2 dielectrics. IEEE Electron Dev. Lett. 23(9), 514–516 (2001)

    Google Scholar 

  75. C.X. Zhu, H. Hu, X.F. Yu, A.J. Kim, A. Chin, M.F. Lee, Voltage and temperature dependence of capacitance of high-K HfO2 MIM capacitors: A unified understanding and prediction. IEEE IEDM Tech. Digest, 879–882 (2003)

    Google Scholar 

  76. T. Ishikawa, D. Kodoma, Y. Matsui, M. Hiratani, T. Furusawa, D. Hisamoto, High-capacitance cu/Ta2O5/cu MIM structure for SoC applications featuring a single mask add-on process. IEEE IEDM Tech. Digest, 940–943 (2002)

    Google Scholar 

  77. H. Hu, C.X. Zhu, X.F. Yu, A. Chin, M.F. Li, B.J. Cho, D.L. Kwong, P.D. Foo, M.B. Yu, X.Y. Liu, J. Winkler, MIM capacitor using atomic-layer-deposited high-K (HfO2)1-x(Al2O3)x dielectrics. IEEE Electron Dev. Lett. 24(2), 60–62 (2003)

    Article  Google Scholar 

  78. J.M. Park, M.W. Song, W.H. Kim, P.K. Park, W.K. Jung, J.Y. Kim, S.J. Won, J.H. Lee, N.I. Lee, H.K. Kang, Mass production worthy MIM capacitor on gate polysilicon (MIM-COG) structure using HfO2/HfOxCyNz/HfO2 dielectric for analog/RF/mixed signal applications. IEEE IEDM Tech. Digest, 993–996 (2007)

    Google Scholar 

  79. Y.K. Yeong, S.J. Won, D.J. Kwon, M.W. Song, W.H. Kim, M.H. Park, J.H. Jeong, H.S. Oh, H.K. Kang, K.P. Suh, High quality high-k capacitor by Ta2O5/HfO2/Ta2O5 multi-layer dielectric and NH3 plasma interface treatment for mixed-signal/RF applications. VLSI Symp. Tech. Digest, 222–223 (2004)

    Google Scholar 

  80. S.J. Kim, B.J. Cho, M.F. Li, S.J. Ding, C.X. Zhu, M.B. Yu, B. Narayanan, A. Chin, D.M. Lee, Improvement of voltage linearity in high-k MIM capacitors using HfO2-SiO2 stacked dielectric. IEEE Electron Dev. Lett. 25(8) (2004)

    Google Scholar 

  81. C. Besset, S. Bruyere, F. Monsieur, S. Boret, E. Deloffre, E. Vincent, Stability of capacitance voltage linearity for high-K MIM capacitor. IEEE IRPS, 586–587 (2005)

    Google Scholar 

  82. H. Samavati, A. Hajimiri, A.R. Shahani, G.N. Nasserbakht, T.H. Lee, Fractal capacitors. IEEE J. Solid State Circuits 33(12), 2035–2041 (1998)

    Article  Google Scholar 

  83. R. Aparicio, A. Hajimiri, Capacity limits and matching properties of lateral flux integrated capacitors. Custom Integrated Circuits Conference, 365–368 (2001)

    Google Scholar 

  84. R. Aparicio, A. Hajimiri, Capacity limits and matching properties of integrated capacitors. IEEE J. Solid State Circuits 37(3), 384–393 (2002)

    Article  Google Scholar 

  85. T. Moselhy, H. Ghali, H.F. Ragair, H. Haddara, Investigation of space filling capacitors. International Conf. on Microelectronics, 287–290 (2003)

    Google Scholar 

  86. C. Gimeno, S. Celma, B. Calvo, J. Revuelto, Hilbert curve based lateral flux capacitors. Proceeding of the 2009 Spanish Conf. on Electron Devices, 219–222 (2009)

    Google Scholar 

  87. Y. Morandini, J.-F. Larchanchel, C. Gaquiere, Evaluation of SiGeC HBT varactor using different collector access and base-collector junction configuration in BiCMOS technologies. IEEE BCTM Tech. Digest, 246–249 (2007)

    Google Scholar 

  88. M.H. Norwood, E. Shatz, Voltage variable capacitor tuning: A review. Proc. IEEE 56(5), 788–798 (1968)

    Article  Google Scholar 

  89. B. El-Kareh, S. Balster, W. Leitz, P. Steinmann, H. Yasuda, M. Corsi, K. Dawoodi, C. Dirnecker, P. Flgietti, A. Haeusler, P. Menz, M. Ramin, T. Scharnagl, M. Schiekoffer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschull, J.W. Weijtmans, C. Willis, A 5V complementary-SiGe BiCMOS technology for high-speed precision analog circuits. IEEE BCTM, 211–214 (2003)

    Google Scholar 

  90. P.J. Kannan, S. Ponczak, J.A. Olmstead, Design considerations of hyperabrupt varactor diodes. IEEE Trans. Electron Dev. ED-18(2), 109–115 (1971)

    Article  Google Scholar 

  91. R.A. Moline, G.F. Foxhall, Ion-implanted hyperabrupt junction voltage variable capacitors. IEEE Trans. Elecron Dev. ED-19(2), 267–273 (1972)

    Article  Google Scholar 

  92. S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, 1985), p. 87

    Google Scholar 

  93. T. Soorapanth, C.P. Yue, D.K. Shaeffer, T.H. Lee, S.S. Wong, Analysis and optimization of accumulation-mode varactor for RF ICs. IEEE Symp.VLSI Circuits, Tech. Digest, 32–33 (1998)

    Google Scholar 

  94. R. Castello, P. Erratico, S. Manzini, F. Svelto, A 305 tuning range varactor compatible with future scaled technologies. IEEE VLSI Circuits, Tech. Digest, 34–35 (1998)

    Google Scholar 

  95. F. Svelto, P. Erratico, S. Manzini, R. Castello, A metal-oxide-semiconductor varactor. IEEE Electron Dev. Lett. 20(4), 164–166 (1999)

    Article  Google Scholar 

  96. K.A. Jenkins, H. Ainapan, Characteristics of submicron MOS varactors. SiRF Tech. Digest, 123–126 (2006)

    Google Scholar 

  97. A.S. Porret, T. Melly, C.C. Enz, E.A. Vittoz, Design of high-Q varactors for low-power wireless applications using a standard CMOS process. IEEE J. Solid State Circuits 35(3), 335–345 (2000)

    Article  Google Scholar 

  98. H. Xu, K.K. O, High-Q thick-gate-oxide MOS varactors with subdesign-rule channel lengths for millimeter-wave applications. IEEE Electron Dev. Lett. 29(4), 363–365 (2008)

    Article  Google Scholar 

  99. R. Bunch, S. Raman, A 0.35 μm CMOS 2.5 GHz complementary – gm VCO using PMOS inversion mode varactors. RFIC Symp., Tech. Digest, 49–52 (2001)

    Google Scholar 

  100. P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs” IEEE J. Solid-State Circuits 35(6), 905–910 (2000)

    Article  Google Scholar 

  101. C.Y. Wu, C.Y. Yu, A 0.8V 5.9GHz wide tuning range CMOS VCO using inversion-mode band switching varactors. IEEE International Symp on Circuits and Systems (ISCAS), 5079–5062 (2005)

    Google Scholar 

  102. F. Svelto, S. Manzini, R. Castello, A three terminal varactor for RF ICs in standard CMOS technology. IEEE Trans. Electron Dev. 47(5), 893–895 (2000)

    Article  Google Scholar 

  103. W. Wong, F. Hui, Z. Chen, K. Shen, J. Lau, Wide tuning range inversion-mode gated varactor and its application on 2-GHz VCO. Sy, p. VLSI Circuits Tech. Digest, 53–54 (1999)

    Google Scholar 

  104. J.N. Burghartz, K.A. Jenkins, M. Soyuer, Multilevel-spiral inductors using VLSI interconnect technology. IEEE Electron Dev. Lett. 17(9), 428–430 (1996)

    Article  Google Scholar 

  105. N. Sturckin, Ferric Inc., DC-DC power conversion with CMOS integrated thin-film inductors, PWRSoC 2016

    Google Scholar 

  106. N. Sturckin, Ferric Inc., Integrated power management with ferromagnetic thin-film power inductors, PWRSoC 2018

    Google Scholar 

  107. Z.X. He, M. Erturk, H. Ding, M. Moon, E. Gordon, D. Daley, A.K. Stamper, D. Coolbaugh, E. Eshun, M. Gordon, A. Joseph, S.S. Ohnge, J. Dunn, High quality passive devices fabricated inexpensively in advanced RF-CMOS technologies with Copper BEOL. Si Monolithic IC. in RF Systems, 187–190 (2007)

    Google Scholar 

  108. C.C. Lin, H.M. Hsu, Y.H. Chen, T. Shi, S.M. Jang, C.H. Yu, M.S. Liang, A full cu damascene metallization process for sub-0.18mm RF CMOS SoC high Q inductor and MIM capacitor application at 2.4 GHz and 5.3GHz. IEEE Proceedings of the IITC, 113–115 (2001)

    Google Scholar 

  109. F.W. Grover, Inductance Calculations: Working Formulas and Tables (Van Nostrand, New Yor, NY, 1947)

    Google Scholar 

  110. S.S. Mohan, M. del Mar Heshenson, S.P. Boyd, T.H. Lee, Simple accurate expressions for planar spiral inductors. IEEE J. Solidi-State Circuits 34(10), 1419–1424 (1999)

    Article  Google Scholar 

  111. A. Hastings, The Art of Analog Layout, 2nd edn. (Prentice Hall, 2005), p. 248

    Google Scholar 

  112. A.W. Pack, K.S. Seo, Air-gap stacked spiral inductor. IEEE Microwave and Guided Wafer Lett. 7(10), 329–331 (1997)

    Article  Google Scholar 

  113. W.B. Kuhn, N.M. Ibrahim, Analysis of current crowding effects in multiturn spiral inductors. IEEE Trans. Microwave Theory and Techniques 49(1), 31–38 (2001)

    Article  Google Scholar 

  114. C. Patrick, S.S. Wong, Physical modeling of spiral inductors on silicon. IEEE Trans. Electron Dev. 47(3), 560–567 (2000)

    Article  Google Scholar 

  115. M. Park, S. Lee, C.S. Kim, H.K. Yu, K.S. Nam, The detailed analysis of high Q CMOS-compatible microwave spiral inductors in silicon technology. IEEE Trans. Electron Dev. 45(9), 1953–1958 (1998)

    Article  Google Scholar 

  116. J.R. Long, M.A. Copeland, The modeling, and design of monolithic inductors for silicon RF ICs. IEEE J. Solid State Circuits 32(3), 357–369 (1997)

    Article  Google Scholar 

  117. R.J. Baker, CMOS Circuit Design, Layout, and Simulation (Wiley, 2010), pp. 813–966

    Google Scholar 

  118. C.T. Black, K.W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I.V. Babich, K.R. Mikove, High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitor. IEEE Electron Dev. Lett. 25(9), 622–624 (2004)

    Article  Google Scholar 

  119. J. Maget, R. Kraus, M. Tiebout, A physical model of a CMOS varactor with high capacitance tuning range and its application to simulate integrated VCOs. Solid State Electron. 46, 2002 (1609-1615)

    Google Scholar 

  120. C.-S. Chang, C.-P. Chao, J.G.J. Chern, J.Y.-C. Sun, Advanced CMOS technology portfolio for RF IC applications. IEEE Trans. Electron Dev. 52(7), 1324–1334 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. 1.

    The VDP sheet resistance of a poly resistor is RS = 1 kΩ/□ at 27 °C. For an average TCR of 2000 ppm/°C, estimate RS at 150 °C.

  2. 2.

    Use the mobility relations in Chap. 2 to calculate the sheet resistance of a deep N-well having a Gaussian profile with a peak concentration of 5 × 1017 cm−3 at a depth of 1.0 μm from the surface and a standard distribution of 0.3 μm. Find the sheet resistance and TCR for 25, 85, and 125 °C.

  3. 3.

    Consider an N-well having a Gaussian profile with a peak donor concentration of 5 × 1017 cm−3 at the silicon surface and a standard deviation (straggle) of 0.4 μm. Assume 25 °C.

    1. (a)

      Find the depth of the junction formed between N-well and a 10 Ω-cm P-type substrate.

    2. (b)

      Use the mobility relations in Chap. 2 to estimate the full well sheet resistance.

    3. (c)

      Estimate the well to substrate parasitic capacitance in fF/μm2.

    4. (d)

      Find the sheet resistance of the well region under a 0.4-μm-thick shallow-trench isolation (STI).

  4. 4.

    A polysilicon resistor of sheet resistance RS = 230 kΩ/□ at 27 °C is formed over STI of thickness 0.4 μm. The TCR is −500 ppm/K, and the VCR is −2090 ppm/K2.

    1. (a)

      Plot the ratio RS(T)/RS0 from 0 to +125 °C where RS0 is the sheet resistance at 27 °C.

    2. (b)

      Plot the ratio RS(V)/RS0 from −10 to +10 V where RS0 is the sheet resistance V = 0.

    3. (c)

      Find the average parasitic capacitance in fF/μm2 for a uniform substrate boron concentration under the STI of 1016 cm−3 and + 5 V applied across the resistor.

  5. 5.

    The figure below is a schematic of a precision analog capacitor with SiO2 as the dielectric, designed in a cross-coupled arrangement. Show that this arrangement reduces the VCC when compared to a single equivalent capacitor having the same dielectric.

    figure a
  6. 6.

    An MIM capacitor is formed with a triple ONO dielectric, consisting of 5-nm oxide, 10-nm nitride, and 10-nm oxide. Assume the dielectric constants to be 3.8 for oxide and 7.0 for nitride and

    1. (a)

      Find the equivalent oxide thickness teq and capacitance in fF/μm2.

    2. (b)

      For 5 V applied between the metal plates, calculate the fields in the oxide and nitride films.

    3. (c)

      For a maximum allowable field in the oxide of 5 × 105 V/cm, what is the maximum voltage that can be applied to the capacitor?

    4. (d)

      What would be the maximum voltage if the dielectric was pure oxide of same teq as for the ONO structure?

  7. 7.

    An accumulation-mode varactor of the type shown in Fig. 8.39 is formed between N+-polysilicon and N-well. The equivalent oxide thickness is 25 nm and the N-well concentration uniform with ND = 1017 cm−3. The gate voltage with respect to N-well is pulsed from +1 to −1 V. Assume negligible generation of electron–hole pairs, and find the tuning ratio at 25 °C. Neglect parasitic capacitances.

  8. 8.

    The minimum top metal width and space in a CMOS process are, respectively, W = 0.5 μm and S = 0.5 μm. Use the minimum dimensions to design a square-shaped inductor of L = 10 nH. Disregard proximity and skin effects.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Kareh, B., Hutter, L.N. (2020). Passive Components. In: Silicon Analog Components. Springer, Cham. https://doi.org/10.1007/978-3-030-15085-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15085-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15084-6

  • Online ISBN: 978-3-030-15085-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics