Skip to main content

Analog/RF CMOS

  • Chapter
  • First Online:
Silicon Analog Components
  • 1146 Accesses

Abstract

The trade-offs between parameters are different for digital, analog, and RF CMOS. In particular, there are conflicting requirements between analog and digital CMOS on operating voltage level, reduced low-frequency noise, high output resistance, low component mismatch, and high linearity. Thus, modifications must be made to the basic digital structure to satisfy analog circuit needs. In contrast, the characteristics of RF CMOS are essentially the same as those of high-speed digital CMOS so that both designs can be integrated on the same chip with little added complexity. In this chapter we first review the characteristics of the two-terminal MOS structure. This lays the groundwork for the discussion of MOSFET and CMOS characteristics in the sections that follow, with emphasis on key analog parameters. The chapter concludes with a review of mobility enhancement techniques, high-κ dielectrics, FinFETs, and fully depleted SOI MOSFETs and a brief discussion of analog CMOS applications.

The terms MOS, MOSFET, and CMOS stand for metal–oxide–silicon, MOS field-effect transistor, and complementary MOS (transistors). In earlier technologies, the metal of choice was aluminum, the insulator (dielectric) was silicon dioxide (or simply, oxide), and the semiconductor was silicon. The term MOS is still used, even for structures having a conductor other than metal, an insulator other than oxide, and a semiconductor material other than silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The subscripts “s” and “b” will be used throughout the chapter to indicate, respectively, surface and bulk parameters.

  2. 2.

    Unless otherwise stated, E, EF, Ei, EC, EV, and Eg are energies expressed in eV; ϕ, ψ, and χ are expressed as potentials in V. Energies and potentials have the same numerical value but different units. Example, kT is expressed in eV and kT/q in V.

  3. 3.

    The values in the plot are extracted from the International technology Roadmap for Semiconductors, ITRS updates (www.itrs.net). The DRAM half-pitch is a metric for “Technology Generation.”

  4. 4.

    LOCOS stands for Local Oxidation of Silicon and is further discussed in Chap. 9.

References

  1. L.M. Terman, An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5(5), 285–299 (1962)

    Article  Google Scholar 

  2. K. Lehovec, A. Slobodskoy, J.L. Sprague, Field effect-capacitance analysis of surface states on silicon. Phys. Status Solidi B 3(3), 447–464 (1963)

    Article  Google Scholar 

  3. A.S. Grove, B.E. Deal, E.H. Snow, C.T. Sah, Investigation of thermally oxidized silicon surfaces using metal-oxide-semiconductor structures. Solid State Electron. 8(2), 145–163 (1965)

    Article  Google Scholar 

  4. S.M. Sze, Physics of Semiconductor Devices (Wiley, 1981), p. 850

    Google Scholar 

  5. B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Trans. Electron Dev. ED-27, 606–608 (1980)

    Article  Google Scholar 

  6. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, 1982), p. 424

    Google Scholar 

  7. R.H. Kingston, S.F. Neustadter, Calculation of the space-charge, electric field, and free carrier concentration at the surface of a semiconductor. J. Appl. Phys. 26(6), 718–720 (1955)

    Article  Google Scholar 

  8. C.G.B. Garrett, W.H. Brattain, Physical theory of semiconductor surfaces. Phy. Rev. 99, 376 (1955)

    Article  Google Scholar 

  9. F. Stern, W.E. Howard, Properties of semiconductor surface inversion layers in the quantum limit. Phys. Rev. 163(3), 816–835 (1967)

    Article  Google Scholar 

  10. M.J. van Dort, P.H. Woerlee, A.J. Walker, A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions. Solid State Electron. 37(3), 411–414 (1994)

    Article  Google Scholar 

  11. S.A. Hareland, S. Krishnamurhty, S. Jallepalli, C.-F. Yeap, K. Hasnat, A.F. Tasch, C.M. Maziar, A computationally efficient model for inversion layer quantization effects in deep submicron n-channel MOSFETs. IEEE Trans. Electron Dev. 43(1), 90–96 (1996)

    Article  Google Scholar 

  12. C.Y. Hu, S. Barnerjee, K. Sandra, G.G. Streetman, P. Sivan, Quantization effects in inversion layers of PMOSFETs on Si(100) substrates. IEEE Electron Dev. Lett. 17(6), 276–278 (1996)

    Article  Google Scholar 

  13. A.G. Sabnis, J.T. Clemens, Characterization of the electron mobility in the inverted < 100 > surface. IEEE IEDM Tech. Digest, 18–21 (1979)

    Google Scholar 

  14. J.T. Watt, J.D. Plummer, Universal mobility-field curves for electrons and holes in MOS inversion layers. VLSI Tech. Digest, 81–82 (1987)

    Google Scholar 

  15. B. El-Kareh, Silicon Devices and Process Integration, Deep Submicron and Nano-Scale Technologies, Chap. 4 (Spinger, 2008)

    Google Scholar 

  16. R. Rios, N.D. Arora, C.L. Huang, An analytical polysilicon depletion effect model for MOSFETs. IEEE Electron Dev. Lett. 15(4), 129–131 (1994)

    Article  Google Scholar 

  17. P. Habăs, S. Selberherr, Numerical simulation of MOS devices with non-degenerate gate. ESSDERC, 161–164 (1990)

    Google Scholar 

  18. K. Schuegraf, C.C. King, C. Hu, Impact of polysilicon depletion in thin oxide MOS technology. VLSITSA, 86–90 (1993)

    Google Scholar 

  19. N.D. Arora, R. Rios, C.L. Huang, Modeling the polysilicon depletion effect and its impact on submicrometer CMOS circuit performance. IEEE Trans. Electron Dev. 42(5), 935–943 (1995)

    Article  Google Scholar 

  20. C.H. Choi, P.R. Chidambaram, R. Khamankar, C.F. Machala, Z. Yu, R.W. Dutton, Gate length dependent polysilicon depletion effects. IEEE Electron Dev. Lett 23(4), 224–226 (2002)

    Article  Google Scholar 

  21. A.S. Grove, O. Leistiko, W.W. Hooper, Effect of surface fields on the breakdown voltage of planar silicon p-n junctions. IEEE Trans. Electron Dev. ED-14(3), 157–162 (1967)

    Article  Google Scholar 

  22. W. Shockley, W.T. Read, Statistics of recombination of holes and electrons. Phys. Rev. 85(5), 835–842 (1952)

    Article  MATH  Google Scholar 

  23. P. Smeys, P.B. Griffin, Z.U. Rek, I.D. Wolf, K.C. Saraswat, Influence of process-induced stress on device characteristics and its impact on scaled device performance. IEEE Trans. Electron Dev. 46(6), 1245–1252 (1999)

    Article  Google Scholar 

  24. W. Shockley, Problems related to p-n junctions in silicon. Solid State Electron. 2(1), 35–67 (1961)

    Article  Google Scholar 

  25. J.F. Verwey, R.P. Kramer, B.J. de Maagt, Mean free path of hot electrons at the surface of boron-doped silicon. J. Appl. Phys. 46(6), 2612–2619 (1975)

    Article  Google Scholar 

  26. B. El-Kareh, Effect of surface field on junction avalanche breakdown. IEDM Tech. Digest, 11–14 (1972)

    Google Scholar 

  27. T.Y. Chan, J. Chen, P.K. Ko, C. Hu, The impact of gate-induced drain leakage. IEEE IEDM, 718–721 (1987)

    Google Scholar 

  28. J. Chen, T.Y. Chan, J.C. Chen, C. Hu, Subthreshold drain leakage current in MOSFET. IEEE Electron Dec. Lett. EDL-8(11), 515–517 (1987)

    Article  Google Scholar 

  29. M.J. Chen, K.C. Chao, C.H. Chen, New observation and the modeling of gate and drain current in off-state P-MOSFETs. IEEE Trans. Electron Dev. 41(5), 734–739 (1994)

    Article  Google Scholar 

  30. M.M. Moslehi, C.Y. Fu, K.C. Saraswat, Thermal and microwave nitrogen plasma nitridation techniques for ultrathin gate insulators of MOS VLSI. Proc. VLSI Tech. Digest, 14–15 (1985)

    Google Scholar 

  31. T. Hori, H. Iwasaki, K. Tsuji, Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing. IEEE Trans. Electron Dev. 36(2), 340–350 (1989)

    Article  Google Scholar 

  32. H.S. Momose, T. Morimoto, Y. Ozawa, K. Yamabe, H. Iwai, Electrical characteristics of rapid thermal nitrided-oxide gate n- and p-MOSFETs with less than 1 atom% nitrogen concentration. IEEE Trans Electron Dev. 41(4), 546–551 (1994)

    Article  Google Scholar 

  33. K.A. Ellis, R.A. Buhrman, Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics. IBM J. Res. Dev. 413(3), 287–300 (1999)

    Article  Google Scholar 

  34. F.H. Gaensslen, V.L. Rideout, E.J. Walker, J.J. Walker, Very small MOSFETs for low-temperature operation. IEEE Trans. Electron Dev. ED-24(3), 218–229 (1977)

    Article  Google Scholar 

  35. O. Leistiko, A.S. Grove, C.T. Sah, Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces. IEEE Trans. Electron Dev. ED-12, 248–254 (1965)

    Article  Google Scholar 

  36. M. Bacheri, C. Turchetti, The need for an explicit model describing MOS transistors in moderate inversion. Electron. Lett. 21(19), 873–874 (1985)

    Article  Google Scholar 

  37. Y. Tsividis, C. McAndrew, Operation and Modeling of the MOS Transistor (Oxford University Press, 2011), p. 91

    Google Scholar 

  38. M. Miura-Mattausch, H.J. Mattausch, N.D. Arira, C.Y. Yang, MOSFET modeling gets physical. IEEE Circuits Dev 17(6), 29–36 (2001)

    Article  Google Scholar 

  39. Y. Cheng, K. Chen, K. Imai, C. Hu, ICM-An analytical inversion charge model for accurate modeling of thin gate oxide MOSFETs. IEEE SYSPAD, 109–112 (1997)

    Google Scholar 

  40. J.R. Schriefer, Effective carrier mobility on surface space charge layers. Phys. Rev. 97, 641–646 (1955)

    Article  Google Scholar 

  41. F. Fang, S. Triebwasser, Carrier surface scattering in silicon inversion layers. IBM J. Res. Dev. 8, 410–415 (1964)

    Article  Google Scholar 

  42. F. Stern, W.E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. B 163, 816–835 (1967)

    Article  Google Scholar 

  43. F.F. Fang, A.B. Fowler, Transport properties of electrons in inverted silicon surface. Phys. Rev. 169, 616–631 (1968)

    Article  Google Scholar 

  44. V.G.K. Reddi, Majority carrier surface mobilities in thermally oxidized silicon. IEEE Trans. Electron Dev ED-15(3), 151–160 (1968)

    Article  Google Scholar 

  45. C.-T. Sah, T.H. Ning, L.L. Tschopp, The scattering of electrons by surface oxide charge and by lattice vibrations. Surf. Sci. 32, 561–575 (1972)

    Article  Google Scholar 

  46. T. Nishida, C.-T. Sah, A physically based mobility model for MOSFET numerical simulations. IEEE Trans. Electron Dev. 34(2), 310–320 (1987)

    Article  Google Scholar 

  47. H. Shin, G.M. Yeric, A.F. Tasch, C.M. Maziar, Physically based models for effective mobility and local field mobility of electrons in MOS inversion channels. Solid State Electron. 34(6), 545–552 (1991)

    Article  Google Scholar 

  48. S.-i. Tagaki, A. Toriumi, M. Iwase, H. Tango, On the universality of inversion layer mobility in silicon MOSFETs Part I –effect of substrate impurity concentration. IEEE Trans. Electron Dev. 41(12), 2357–2362 (1994)

    Article  Google Scholar 

  49. J.R. Hauser, Extraction of experimental mobility data for MOS devices. IEEE Trans. Electron Dev. 43(11), 1981–1988 (1996)

    Article  Google Scholar 

  50. K. Chen, H.C. Wann, J. Dunster, P.K. Ko, C. Hu, MOSFET carrier mobility model based on gate oxide thickness, threshold and gate voltage. Solid State Electron. 39(10), 1515–1518 (1996)

    Article  Google Scholar 

  51. H.K.J. Ihantola, J.L. Moll, Design theory of a surface field-effect transistor. Solid State Electron. 7(6), 423 (1964)

    Article  Google Scholar 

  52. C.T. Sah, Characteristics of the metal-oxide-semiconductor transistors. IEEE Trans. Electron Dev. ED-11(7), 324–345 (1964)

    Article  Google Scholar 

  53. G. Baccarani, G.A. Sai-Halasz, Spreading resistance in submicron MOSFETs. IEEE Electron Device Lett. 4(2), 27–29 (1983)

    Article  Google Scholar 

  54. K.K. Ng, W.T. Lynch, Analysis of the gate-voltage-dependent series resistance of MOSFETs. IEEE Trans. Electron Dev. 33(7), 965–972 (1986)

    Article  Google Scholar 

  55. K.K. Ng, R.J. Bayruns, S.C. Fang, The spreading resistance of MOSFETs. IEEE Electron Device Lett. 6(4), 195–197 (1985)

    Article  Google Scholar 

  56. J.M. Pimbley, Two-dimensional current flow in the MOSFET source-drain. IEEE Trans. Electron Dev. ED-33(7), 986–996 (1986)

    Article  Google Scholar 

  57. B. Iňiguez, T.A. Fjeldly, Unified substrate current model for MOSFETs. Solid State Electron. 41(1), 87–94 (1997)

    Article  Google Scholar 

  58. J.H. Huang, G.B. Zhang, Z.H. Liu, J. Duster, S.J. Wann, P. Ko, C. Hu, Temperature dependence of MOSFET substrate current. IEEE Electron Dev. Lett. 14(5), 268–271 (1993)

    Article  Google Scholar 

  59. M. Nagata, J. Nagai, K. Hijikata, T. Morie, A. Iwata, Physical design guides for substrate noise reduction in CMOS digital circuits. IEEE J. Solid State Circuits 36(3), 539–548 (2001)

    Article  Google Scholar 

  60. M.S. Peng, H.S. Lee, Study of substrate noise and techniques for minimization. IEEE J. Solid State Circuits 39(11), 2080–2086 (2004)

    Article  Google Scholar 

  61. T. Blalack, B.A. Wooley, The effects of switching noise on an oversampling A/D converter. IEEE Solid-State Circuits Conf. Tech. Digest, 200, 367–201 (1995)

    Google Scholar 

  62. A. Hokazono, S. Balasubramanian, K. Ishimaru, H. Ishiuchi, C. Hu, T.J. King Liu, Forward body biasing as a bulk-Si CMOS technology scaling strategy. IEEE Trans. Electron Dev. 55(10), 2657–2664 (2008)

    Article  Google Scholar 

  63. S.K. Jayapal, Y. Manoli, Minimizing energy consumption with variable body bias for ultra-low energy LSIs. VLSI-DAT, 1–4 (2007)

    Google Scholar 

  64. M.R. Wordeman, R.H. Dennard, Threshold voltage characteristics of depletion-mode MOSFETs. IEEE Trans. Electron Dev. 28(9), 1025–1030 (1981)

    Article  Google Scholar 

  65. H. Haddara, T. Elewa, S. Christoloveanu, Static and dynamic transconductance model for depletion-mode transistors: A new characterization method for silicon on insulator materials. IEEE Electron Dev. Lett. 9(1), 35–37 (1988)

    Article  Google Scholar 

  66. L.D. Yau, A simple theory to predict the threshold voltage of short-channel IGFETs. Solid State Electron. 17(10), 1059–1063 (1974)

    Article  Google Scholar 

  67. O. Jaentsch, A geometrical model of the threshold voltage of short and narrow-channel MOSFETs. Solid State Electron. 25(1), 59–61 (1982)

    Article  Google Scholar 

  68. R.R. Troutman, VLSI limitations from drain-induced barrier lowering. IEEE Trans. Electron Dev. ED-26(4), 461–469 (1979)

    Article  Google Scholar 

  69. T.H. Nguyen, J.D. Plummer, Physical mechanisms responsible for short channel effects in MOS devices. IEEE IEDM Tech. Digest, 596–599 (1981)

    Google Scholar 

  70. C.-Y. Wu, S.-Y. Yang, An analytic and accurate model for the threshold voltage of short channel MOSFETs in VLSI. Solid State Electron. 27(7), 651–658 (1984)

    Article  MathSciNet  Google Scholar 

  71. S.C. Jain, P. Balk, A unified analytical model for drain-induced barrier lowering and drain-induced high electric field in a short-channel MOSFET. Solid State Electron. 30(5), 503–511 (1987)

    Article  Google Scholar 

  72. P.E. Cottrell, E.M. Buturla, Steady state analysis of field effect transistors via the finite element method. IEEE IEDM Tech. Digest, 51–54 (1975)

    Google Scholar 

  73. S. Selberherr, MINIMOS - A two-dimensional MOS transistor analyzer. IEEE Trans. Electron Dev. ED-27(8), 1440–1560 (1980)

    Google Scholar 

  74. W.P. Noble, Short channel effects in dual gate field effect transistors. IEEE IEDM Tech. Digest, 483–486 (1978)

    Google Scholar 

  75. T. Hori, K. Kurimoto, A new half-micron p-channel MOSFET with LATIPs (“Large-Tilt-Angle-Implanted-Punch-Through Stopper”). IEEE IEDM Tech. Digest, 394–397 (1988)

    Google Scholar 

  76. H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yishida, K. Takeuchi, Y. Ochiai, T. Mogami, T. Kunio, Sub-50-nm physical gate length CMOS technology and beyond using steep halo. IEEE Trans. Electron Dev. 49(1), 89–95 (2002)

    Article  Google Scholar 

  77. A. Chatterjee, K. Visanth, D.T. Glider, M. Nandakumar, G. Pollack, R. Aggarwal, M. Rodder, H. Shichijo, Transistor design issues in integrated analog functions with high performance digital CMOS. VLSI Tech. Digest, 147–148 (1999)

    Google Scholar 

  78. L.N. Hutter, J.R. Hellums, Analog CMOS technology (Smicon Japan, Tokyo, 1999)

    Google Scholar 

  79. J.G. Ruch, Electron dynamics in short channel field-effect transistors. IEEE Trans. Electron Dev. ED-19(5), 652–654 (1972)

    Article  Google Scholar 

  80. G. Baccarani, M.R. Wordeman, An investigation of steady-state velocity overshoot in silicon. Solid State Electron. 28(4), 407–416 (1985)

    Article  Google Scholar 

  81. G.A. Sai-Halasz, M.R. Wordemann, D.P. Kern, S. Rischton, E. Ganin, High transconductance and velocity overshoot in NMOS devices at the 0.1-μm gate-length level. IEEE Electron Dev. Lett. 9(9), 464–466 (1988)

    Article  Google Scholar 

  82. S.Y. Chou, D.A. Antoniadis, H.I. Smith, Observation of electron velocity overshoot in sub-100-nm-channel MOSFETs in silicon. IEEE Electron Dev. Lett. 6(12), 665–667 (1985)

    Article  Google Scholar 

  83. R. Ohba, T. Mizuno, Nonstationary electron/hole transport in sub-0.1 μm MOS devices: Correlation with mobility and low-power CMOS application. IEEE Electron Dev. 48(2), 338–343 (2001)

    Article  Google Scholar 

  84. A. Ochoa, F.W. Sexton, T.F. Wrobel, G.L. Hash, Snap-back: A stable regenerative breakdown mode of MOS devices. IEEE Trans. Nucl. Sci. NS-10(6), 4127–4130 (1983)

    Article  Google Scholar 

  85. A.Z.H. Wang, C.-H. Tsay, An on-chip ESD protection circuit with low trigger voltage in BiCMOS technology. IEEE J. Solid State Circuits 36(1), 40–45 (2001)

    Article  Google Scholar 

  86. M. Nishida, H. Onodera, An anomalous increase in threshold voltages with shortening the channel lengths for deeply boron-implanted n-channel MOSFETs. IEEE Trans. Electron Dev. 28(9), 1101–1103 (1981)

    Article  Google Scholar 

  87. M. Orlowski, C. Mazuré, F. Lau, Submicron short channel effects due to gate reoxidation induced lateral interstitial diffusion. IEEE IEDM Tech. Digest, 632–635 (1987)

    Google Scholar 

  88. C.-Y. Hu, J.M. Sung, Reverse short-channel effects on threshold voltage in submicron silicide devices. IEEE Electron Dev. Lett. 10(10), 446–448 (1989)

    Article  Google Scholar 

  89. H. Brut, A. Juge, G. Ghbaudo, Physical model of threshold voltage in silicon MOS transistors including reverse short channel effects. Electron. Lett. 31(5), 411–412 (1995)

    Article  Google Scholar 

  90. K. Nishi, H. Matsuhashi, T. Ochini, K. Kasai, T. Nishikawa, Evidence of channel profile modification due to implantation damage studied by new method, and its implication to reverse short channel effect of nMOSFETs. IEEE IEDM Tech. Digest, 993–995 (1995)

    Google Scholar 

  91. H. Jacobs, A.V. Schwerin, D. Scharfetter, F. Lau, MOSFET reverse short channel effect due to silicon interstitial capture in gate oxide. IEEE IEDM Tech. Digest, 307–310 (1993)

    Google Scholar 

  92. K.O. Jeppson, Influence of the channel width on the threshold voltage modulation in M.O.S.F.E.T.S. Electron. Lett. 11(14), 297–299 (1975)

    Article  Google Scholar 

  93. L.A. Akers, The inverse-narrow-width effect. IEEE Electron Dev. Lett. 7(7), 419–421 (1986)

    Article  Google Scholar 

  94. A. Chatterjee, D. Rogers, J. McKee, I. Ali, S. Nag, I.C. Chen, A shallow trench isolation using LOCOS edge for preventing corner effects for 0.25/0.18 μm CMOS technologies and beyond. IEEE IEDM Tech. Digest, 829–832 (1996)

    Google Scholar 

  95. S. Matsuda, T. Sato, H. Yoshimura, Y. Takegawa, A. Sudo, I. Mizushima, Y. Tsunashima, Y. Toyoshima, Novel corner rounding process for shallow trench isolation utilizing MSTS (Micro-Structure Transformation of Silicon). IEEE IEDM Tech. Digest, 137–140 (1998)

    Google Scholar 

  96. C.H. Li, K.C. Tu, H.C. Chu, I.H. Chang, W.R. Liaw, H.F. Lee, W.Y. Lien, M.H. Tsai, W.J. Liang, W.G. Yeh, H.M. Chou, C.Y. Chen, M.H. Chi, A robust trench isolation (STI) with SiN pull-back process for advanced DRAM technology. IEEE/SMI Adv. Semicon. Manuf. Conf, 21–27 (2002)

    Google Scholar 

  97. B. Razavi, R.H. Yan, K.F. Lee, Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuit Syst 41, 750–754 (1994)

    Article  Google Scholar 

  98. M.I. Elmasry, Capacitance calculation in MOSFET VLSI. IEEE Electron Dev. Lett. 3(1), 6–7 (1982)

    Article  Google Scholar 

  99. R. Shrivatsava, K. Fitzpatrick, A simple model for the overlap capacitance of a VLSI MOS device. IEEE Trans. Electron Dev. 29(12), 1870–1875 (1982)

    Article  Google Scholar 

  100. J. Mueller, E.D. Thoma, C. Bermicot, A. Juge, Modeling of MOSFET parasitic capacitances and their impact on circuit performance. Solid State Electron. 51(11/12), 1485–1493 (2007)

    Article  Google Scholar 

  101. A. Bansal, B.C. Paul, K. Roy, Modeling and optimization of fringe capacitance of nanoscale DGMOS devices. IEEE Trans. Electron Dev. 52(2), 256–262 (2005)

    Article  Google Scholar 

  102. J.-R. Kahng, J.-W. Moon, J.-H. Kim, C-V extraction method for gate fringe capacitance and gate to source-drain overlap length of LDD MOSFET. IEEE ICMTS, 59–63 (2001)

    Google Scholar 

  103. T. Sato, T. Takeishi, H. Hara, Mobility anisotropy of electrons in inversion layer on oxidized silicon surfaces. Phys. Rev. B 4(6), 195–1960 (1971)

    Article  Google Scholar 

  104. C.T. Sah, J.R. Edwards, T.H. Ning, Observation of mobility anisotropy of electrons on (110) silicon surfaces at low temperatures. Phys. Staus Solidi (a) 10(1), 153–160 (1972)

    Article  Google Scholar 

  105. S.I. Tagaki, A. Toriumi, M. Iwase, H. Tango, On the universality of inversion layer mobility in Si. MOSFETs: Part II – effect of surface orientation. IEEE Trans. Electron Dev 41(12), 2362–2368 (1994)

    Google Scholar 

  106. M. Yang, V.W.C. Chan, K.K. Chan, L. Shi, D.M. Fried, J.H. Sathis, A.I. Chou, E.P. Gusev, J.A. Ott, L.E. Burns, M.V. Fischetti, M. Ieong, Hybrid-orientation technology (HOT): Opportuniti4es and challenges. IEEE Trans. Electron Dev 53(5), 965–978 (2006)

    Article  Google Scholar 

  107. M. Yang, E.P. Gusev, M. Ieong, O. Gluschnkov, D.C. Boyd, K.K. Chan, P.M. Kozlowski, C.P. D’Emic, R.M. Sicina, P.C. Jamison, A.I. Chou, Performance dependence of CMOS silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics. IEEE Electron Dev. Lett 24(5), 339–341 (2003)

    Article  Google Scholar 

  108. H.S. Momose, T. Ohguro, K. Kojima, S.-i. Nakamura, Y. Toyoshima, 1.5-nm gate oxide CMOS on (100) surface-oriented Si substrate. IEEE Trans. Electron Dev. 50(4), 1001–1007 (2003)

    Article  Google Scholar 

  109. M. Kinugawa, M. Kakumu, T. Usami, J. Matsugana, Effects of silicon surface orientation on submicron CMOS devices. IEEE IEDM Tech. Digest, 581–584 (1985)

    Google Scholar 

  110. T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, T. Maeda, S. Takagi, Physical mechanism for high hole mobility in (110)-surface strained- and unstrained-MOSFETs. IEEE IEDM Tech. Digest, 809–812 (2003)

    Google Scholar 

  111. K. Onishi, C.S. Kang, R. Choi, H.-J. Cho, Y.H. Kim, S. Krishnan, M.S. Akbar, J.C. Lee, Performance of polysilicon gate HfO2 MOSFETs on (100) and (111) silicon substrate. IEEE Electron Dev. Lett. 24(4), 254–256 (2003)

    Article  Google Scholar 

  112. L. Chang, M. Ieong, M. Yang, CMOS circuit performance enhancement by surface orientation optimization. IEEE Trans. Electron Dev. 51(10), 1621–1627 (2004)

    Article  Google Scholar 

  113. H. Nakamura, T. Ezaki, T. Ewamoto, M. Togo, T. Ikezawa, N. Ikarashi, M. Hane, T. Yamamoto, Effects of selecting channel direction in improving performance of sub-100 nm MOSFETs fabricated on (110) surface Si substrate. Jpn. J. Appl. Phys. 43(4B), 1723–1728 (2004)

    Article  Google Scholar 

  114. M. Aoki, K. Yano, T. Masuhara, K. Shimohigashi, Fully symmetric cooled CMOS on (110) plane. IEEE Trans. Electron Dev. 36(8), 1429–1433 (1989)

    Article  Google Scholar 

  115. R.W. Keyes, High-mobility FET in strained silicon. IEEE Trans. Electron Dev ED-33(6), 853 (1986)

    Google Scholar 

  116. C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. B 94(1), 42–46 (1954)

    Article  Google Scholar 

  117. S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buchler, R. Chau, S. Cea, T. Ghani, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyire, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Masry, A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Dev. 51(11), 2004 (1790-1796)

    Google Scholar 

  118. K.-J. Chui, K.-W. Ang, N. Balasubramanian, M.-F. Lee, G.S. Samudra, Y.-C. Yeo, n-MOSFET with silicon-carbon source/drain for enhancement of carrier transport. IEEE Trans. Electron Dev. 54(2), 249–256 (2007)

    Article  Google Scholar 

  119. K. Rim, J.L. Hoyt, J.F. Gibbons, Fabrication and analysis of deep submicron strained-Si N-MOSFETs. IEEE Trans. Electron Dev. 47(7), 1406–1415 (2000)

    Article  Google Scholar 

  120. H.M. Nayfey, C.W. Leitz, A.J. Pitera, E.A. Fitzgerald, J.L. Hoyt, D.A. Antoniadis, Influence of high channel doping on the inversion layer electron mobility in strained silicon n-MOSFETs. IEEE Electron Dev. Lett. 24(4), 248–250 (2003)

    Article  Google Scholar 

  121. C.-H. Ge, C.-C. Lin, C.-H. Ko, C.-C. Huang, B.-W. Chan, B.-C. Perng, V.-C. Sheu, P.-Y. Tsai, L.-G. Yao, C.-L. Wu, T.-L. Lee, C.-J. Chen, C.-T. Wang, S.-C. Lin, Y.-C. Yeo, C. Hu, Process-strained Si (PSS) CMOS technology featuring 3D strain engineering. IEEE IEDM Tech. Digest, 73–76 (2003)

    Google Scholar 

  122. E. Simoen, P. Verheyen, A. Shickova, R. Loo, C. Claeys, On the low-frequency noise of pMOSFETs with embedded SiGe source/drain and fully silicided metal gate. IEEE Electron Dev. Lett. 28(11), 987–989 (2007)

    Article  Google Scholar 

  123. A.E. Thompson, R.S. Chau, T. Ghani, K. Mistry, S. Tyagi, M.T. Bohr, In search “forever”, continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf 18(1), 26–36 (2005)

    Article  Google Scholar 

  124. T. Marimoto, H. Sasaki Mimose, Y. Ozawa, K. Yamabe, H. Iwai, Effect of boron penetration and resultant limitaions in ultrathin pure oxide and nitrided-oxide gate-films. IEEE IEDM Tech. Digest, 429–432 (1990)

    Google Scholar 

  125. J.S. Cable, E.A. Mann, C.S. Woo, Impurity barrier properties of reoxidized nitrided oxide films for use with P+-doped polysilicon gates. Electron Dev. Lett 12(3), 128–130 (1991)

    Article  Google Scholar 

  126. B. Piot, K. Barla, A. Strakoni, Boron diffusion effects from P+-polysilicon gate in thin thermal oxide and plasma nitrided oxide. Microelectron. Eng. 15, 475–478m (1991)

    Article  Google Scholar 

  127. B. Tavel, M. Bidaud, N. Emonet, D. Barge, H. Brut, D. Roy, J.C. Vildeuil, R. Difrenza, K. Rochereau, M. Denais, V. Huard, P. Llinares, S. Bruyère, C. Parthasarthy, N. Revil, R. Pantel, F. Guyader, L. Vishnunotla, K. Barla, F. Arnaud, P. Stolk, M. Woo, Thin oxyntride solution for digital and mixed-signale 65nm CMOS platform. IEEE IEDM Tech. Digets, 643–646 (2003)

    Google Scholar 

  128. M. Marin, J.C. Vildeuil, B. Tavel, B. Duriez, F. Arnaud, P. Stolk, M. Woo, Can 1/f noise in MOFETs ne reduced by gate oxide and channel optimization?, 18th International Conference on Noise and Fluctuations, 195–198 (2005)

    Google Scholar 

  129. B. El-Kareh, Silicon Devices and Process Integration (Springer, 2009)

    Google Scholar 

  130. Z.M. Rittersma, M. Vertregt, W. Deweerd, S. Van Elshocht, P. Srinivasan, E. Simoen, Characterization and mixed-signal properties of MOSFETs with high-k (SiON/HfSiON/TaN) gate stacks. IEEE Trans. Electron Dev. 53(5), 1216–1225 (2006)

    Article  Google Scholar 

  131. H.-M. Kwon, I.-S. Han, J.-D. Bok, S.-U. Park, Y.-J. Jung, G.-W. Lee, Y.-S. Chung, J.-H. Lee, C.Y. Kang, P. Kirsch, R. Jammy, H.-D. Lee, Characterization of random telegraph signal noise of high-performance p-MOSFETs with a high-k dielectric/metal gate. IEEE Electron Dev. Lett. 32(5), 686–688 (2011)

    Article  Google Scholar 

  132. C. Hobbs, T. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, P. Tobin, 80 nm poly-Si gate CMOS with HfO2 gate dielectric. IEEE IEDM Tech. Digest, 651–654 (2001)

    Google Scholar 

  133. X. Yu, M. Yu, C. Zhu, A comparative study of HfTaON/SiO2 and HfON/SiO2 gate stacks with TaN metal gate for advanced CMOS applications. IEEE Trans. Electron Dev. 54(2), 284–290 (2007)

    Article  Google Scholar 

  134. A.L.P. Rotondaro, M.R. Visokay, J.J. Chambers, A. Shanware, R. Khamankar, H. Bu, R.T. Laaksonen, L. Tsung, M. Douglas, R. Kuan, M.J. Bevan, T. Grider, J. McPherson, L. Colombo, Advanced CMOS Transistors with a Novel HfSiON Gate Dielectric. VLSI Tech. Digest, 148–149 (2002)

    Google Scholar 

  135. T. Yamaguchi, R. Iijima, T. Ino, A. Nishiyama, H. Satake, N. Fukushima, Additional scattering effects for mobility degradation in Hf-silicate gate MISFETs. IEEE IEDM Tech. Digest, 621–624 (2002)

    Google Scholar 

  136. Z. Ren, M.V. Fischetti, E.P. Geusev, E.A. Cartier, M. Chudzik, Inversion channel mobility in high-k high performance MOSFETs. IEDM Tech. Digest, 793–796 (2003)

    Google Scholar 

  137. A. Morioka, H. Watanabe, M. Miyamura, T. Tatsumi, M. Saitoh, T. Ogura, T. Iwamoto, T. Ikarashi, Y. Saito, Y. Okada, H. Watanabe, Y. Mochiduki, T. Mogami, High mobility MISFET with low trapped charge in HfSiO films. VLSI. Tech. Digest, 165–166 (2003)

    Google Scholar 

  138. M. Fulde, A. Mercha, C. Gustin, B. Parvais, V. Subramanian, K.V. Arnim, F. Bauer, K. Schruefer, D. Schmitt-Landsiedel, G. Knoblinger, Analog design challenges and trade-offs using emerging materials and devices. European Solid-State Dev. Res. Conf., ESSDERC, 123–126 (2007)

    Google Scholar 

  139. C.-H. Jan, M. Agostinelli, M. Buehler, Z.-P. Chen, S.-J. Choi, G. Curello, H. Deshpande, S. Gannavaram, W. Hafez, U. Jalan, M. Kang, P. Kolar, K. Komeyli, B. Landau, A. Lake, N. Lazo, S.-H. Lee, T. Leo, J. Lin, N. Lindert, S. Ma, L. McGill, C. Meining, A. Paliwal, J. Park, K. Phoa, I. Post, N. Pradhan, M. Prince, A. Rahman, J. Rizk, L. Rockford, G. Sacks, A. Schmitz, H. Tashiro, C. Tsai, P. Vandervoorn, J. Xu, L. Yang, J.-Y. Yeh, J. Yip, K. Zhang, Y. Zhang, P. Bai, A 32nm SoC platform technology with 2nd generation high-k/metal gate transistors optimized for ultra-low power, high performance, and high density product applications. IEEE IEDM Tech. Digest, 647–650 (2009)

    Google Scholar 

  140. H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, F. Masuoka, High performance CMOS surrounding gate transistor (SGT) for ultra-high density LSIs. IEEE IEDM Tech. Digest, 88–91 (1988)

    Google Scholar 

  141. D. Hisamoto, T. Kaga, Y. Kawamoto, E. Takeda, A fully depleted lean-channel transistor (DELTA) - novel vertical ultra-thin SOI MOSFEF. IEEE IEDM Tech. Digest, 883–886 (1989)

    Google Scholar 

  142. J.M. Hergenrother, D. Monroe, F.P. Klemens, A. Kornblit, G.R. Weber, W.M. Mansfield, M.R. Baker, F.H. Baumann, K.J. Bolan, J.E. Bower, N.A. Ciampa, R.A. Cirelli, J.I. Colonell, D.J. Eaglesham, J. Frackoviak, H.J. Gossmann, M.L. Green, S.J. Hillenius, C.A. King, R.N. Kleiman, W.Y.-C. Lai, J.T.-C. Lee, R.C. Liu, H.L. Maynard, M.D. Morris, S.-H. Oh, C.-S. Pai, C.S. Rafferty, J.M. Rosamilia, T.W. Sorsch, H.-H. Vuong, The vertical replacement-gate (VRG) MOSFET: A 50-nm vertical MOSFET with lithography-independent gate length. IEEE IDEM Tech. Digest, 75–78 (1999)

    Google Scholar 

  143. X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, C. Hu, Sub 50-nm FinFET: PMOS. IEEE IEDM Tech. Digest, 67–70 (1999)

    Google Scholar 

  144. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, C. Hu, FinFET—A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47(12), 2320–2325 (2000)

    Article  Google Scholar 

  145. A. Thean, P. Wambacq, J.W. Lee, M.J. Cho, A. Veloso, Y. Sasaki, T. Chiarella, K. Miyaguchi, B. Parvais, M. Garcia Bardon, P. Schuddinck, M.S. Kim, N. Horiguchi, M. Dehan, A. Mercha, G. Van der Plas, N. Collaert, D. Verkest, Impact of multi-gate device architectures on digital and analog circuits and its implications on System-On-Chip technologies. IEEE IEDM Tech. Digest, 17.3.1–17.3.3 (2013)

    Google Scholar 

  146. S.-Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, M. Liang, T. Miyashita, C.H. Tsai, B.C. Hsu, H.Y. Chen, T. Yamamoto, S.Y. Chang, V.S. Chang, C.H. Chang, J.H. Chen, H.F. Chen, K.C. Ting, Y.K. Wu, K.H. Pan, R.F. Tsui, C.H. Yao, P.R. Chang, H.M. Lien, T.L. Lee, H.M. Lee, W. Chang, T. Chang, R. Chen, M. Yeh, C.C. Chen, Y.H. Chiu, Y.H. Chen, H.C. Huang, Y.C. Lu, C.W. Chang, M.H. Tsai, C.C. Liu, K.S. Chen, C.C. Kuo, H.T. Lin, S.M. Jang, Y. Ku, A 16nm FinFET CMOS Technology for mobile SoC and computing applications. IEEE IEDM Tech. Digest, 224–227 (2013)

    Google Scholar 

  147. Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, C. Hu, Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Trans. Electron Dev 21(5), 254–255

    Google Scholar 

  148. S.D.S. Malhi, H.W. Lam, R.F. Pinizzotto, A.H. Hamdi, F.D. McDaniel, Novel SOI CMOS design using ultra-thin near-intrinsic substrate. IEDM Tech. Digest, 107–110 (1982)

    Google Scholar 

  149. K. Throngnumchai, K. Asada, T. Sugano, Modeling of 0.1-μm MOSFET on SOI structure using Monte Carlo simulation technique. IEEE Trans. Electron Dev ED-33(7), 1005–1011 (1986)

    Article  Google Scholar 

  150. T.-J. King, J.P. McVittie, C. Saraswat, Electrical properties of heavily doped polycrystalline silicon-germanium films. IEEE Trans. Electron Dev 41(2), 228–231

    Article  Google Scholar 

  151. J.-P. Coulinge, Fully-depleted SOI CMOS for analog applications. IEEE Trans. Electron Dev 45(5), 1010–1016 (1998)

    Article  Google Scholar 

  152. E. Suzuchi, K. Ishii, S. Kanemaru, T. Toshisumi, T. Sekigawa, K. Nagai, H. Hiroshima, Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Dev. 47(2), 354–359 (2000)

    Article  Google Scholar 

  153. E. Simoen, A. Mercha, C. Claeys, N. Lukyanchilova, N. Garbar, Critical discussion of the front-back gate coupling effect on the low-frequency noise in fully-depleted SOI MOSFETs. IEEE Trans. Electron Dev 51(6) (2004)

    Article  Google Scholar 

  154. N.H.E. West, K. Eshraghian, Principles of CMOS VLSI Design (Addison-Wesley Publishing Company, 1993), p. 81

    Google Scholar 

  155. R.J. Baker, CMOS Circuit Design, Layout, and Simulation (IEEE Press/Wiley, 2010), p. 636

    Google Scholar 

  156. E.K.F. Lee, A. Lam, T. Li, A 0.65 V rail-to-rail constant gm opamp for biomedical applications, IEEE Intn’l Symposium On Circuits and Systems (ISCAS), 2721–2724 (2008)

    Google Scholar 

  157. M.-D. Ker, K.-C. Hsu, Native-NMOS-triggered SCR with faster turn-on speed for effective ESD protection in a 0.13-μm CMOS process. IEEE Trans. Device Mater. Reliab 5(3), 543–554 (2005)

    Article  Google Scholar 

  158. H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid State Circuits 34(5), 670674 (1999)

    Article  Google Scholar 

  159. K.C. Gunsager, C.K. Kim, J.D. Phillips, Performance and operation of buried charge coupled devices. IEEE IEDM Tech. Digest, 21–23 (1973)

    Google Scholar 

  160. Y. Chen, X. Wang, A.J. Mierop, A.J.P. Theuwissen, A CMOS image sensor with in-pixel buried-channel source follower and optimized row selector. IEEE Trans. Electron Dev. 56(11), 2390–2396 (2009)

    Article  Google Scholar 

  161. R. Griffith, R. Vyne, R. Dorson, T. Petty, A 1 V BiCMOS rail-to-tail amplifier with n-channel depletion-mode input-stage. IEEE ISSCC, 352–353,384 (1997)

    Google Scholar 

  162. K. Koh, B.J. Hwang, K.H. Kwak, Y.S. Son, J.Y. Lee, J.H. Jang, S.H. Seo, H.S. Kim, D. Park, K.N. Kim, Highly manufacturable 100 nm 6T low power SRAM with single poly-Si gate technology. IEEE VLSI Tech. Syst. Appl, 94–97 (2003)

    Google Scholar 

  163. T. Stockstad, H. Yoshizawa, A 0.9-V 0.5-μA rail-to-rail CMOS operational amplifier. IEEE JSSC 37(3) (2002)

    Google Scholar 

  164. R. Griffith, R.L. Vyne, R.N. Dotson, T. Petty, A 1-V BiCMOS rail-to-rail amplifier with n-channel depletion mode input stage. IEEE JSSC 32(12) (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. 1.

    An MOS structure formed on P-type substrate is biased in strong accumulation. Assume that the maximum field in the oxide may not exceed 5.5 × 106 V/cm and estimate the maximum excess holes/cm2 that can be induced in silicon. Assume an oxide thickness of 7.2 nm and find the maximum voltage that may be applied to the gate.

  2. 2.

    For the MOS structure in Problem 1, find the surface potential that yields a concentration of holes at the surface of 1020 cm−3 at 25 °C. What is the surface concentration of electrons for this case?

  3. 3.

    An idealized MOS structure is constructed on a P-type substrate of uniform concentration NA = 5 × 1016 cm−3.

    1. (a)

      Assume an oxide thickness tox = 12.5 nm and 25 °C and find the threshold voltage.

    2. (b)

      While the MOS structure is kept at 25 °C in a dark enclosure, the gate voltage is pulsed from 0 to +5 V and held constant at +5 V. Find the depletion width immediately after the pulse.

    3. (c)

      Estimate the inversion layer concentration, Qn, after the surface fully relaxes to its steady-state condition.

  4. 4.

    Show that for a uniformly doped MOSFET body the body-bias effect can be expressed as

    $$ \frac{\mathrm{d}{V}_{\mathrm{T}}}{\mathrm{d}{V}_{\mathrm{B}}}=\frac{C_{\mathrm{min}}}{C_{\mathrm{max}}-{C}_{\mathrm{min}}} $$

    where VB is the source-to-body voltage.

  5. 5.

    Approximate the field at the silicon surface field and in the oxide for the structure in Problem 3. For

    1. (a)

      VG = VT at onset of strong inversion.

    2. (b)

      VG = 5 V, in deep depletion.

    3. (c)

      VG = 5 V in steady-state strong inversion.

  6. 6.

    The following assumptions are made for simplicity: Long and wide buried-channel PMOS; uniform buried-channel concentration NA = 5 × 1016 cm−3; buried-channel junction depth xjbp = 0.12 μm; N-well concentration at junction ND = 5 × 1016 cm−3; EOT teq = 12.5 nm; degenerately doped N+-poly gate; temperature 25 °C. Estimate: The threshold voltage and subthreshold slope.

  7. 7.

    An NMOS having an EOT of 13 nm is fabricated on a 2 Ω-cm substrate. The source, drain, and substrate are grounded and the gate biased such that the substrate surface potential is +0.5 V. Assume 25 °C, Qeff = 0 and find the surface concentrations of electrons and holes. For an N+-polysilicon gate, find the corresponding gate voltage.

  8. 8.

    For the structure in Problem 6, find the surface potential at onset of strong inversion, the maximum depletion width, the maximum bulk charge density in steady-state strong inversion, the threshold voltage, and the number of electrons per cm2.

  9. 9.

    An NMOS is made on a P-type substrate with NA = 2.5 × 1017 cm−3, inversion teq = 8.0 nm, and an N+-polysilicon gate. The effective oxide charge is Qeff = +2 × 1011q C/cm2. The effective channel dimensions are Leff = 0.5 μm, Weff = 2 μm. For 25 and 140 °C find:

    1. (a)

      The threshold voltage for VD = 0.1 V.

    2. (b)

      The subthreshold slope in mV/decade.

    3. (c)

      The drain current at (VG − VT) = 3.0 V, VD = 0.1 V and 3.0 V.

    4. (d)

      The transconductance for the voltage conditions in (c).

  10. 10.

    A long- and wide-channel isolated NMOS having a P-well concentration NA = 1.8 × 1017 cm−3, teq = 13.0 nm in inversion. Assume 25 °C. By how much should the source to P-well junction be reverse biased to obtain an increase in VT of 0.2 V?

  11. 11.

    Assume that the channel length in Problem 8. Is Leff = 1 μm and neglect fringe capacitances. Estimate fT at 25 °C for VG − VT = 3.0 V and VD = 3.0 V.

  12. 12.

    A 5 V PMOS is biased at (VG − VT) = −2.5 V. The drain current is measured as 0.251 mA/μm (width) at VD = −3 V and 0.252 mA/μm at VD = −4 V. Find the drain conductance, the output resistance and the Early voltage.

  13. 13.

    The threshold voltage of an enhancement-mode NMOS is 0.6 V. Find the dose of arsenic that must be implanted in silicon under the gate of the NMOS to transform it into a depletion-mode NMOS with VT = −0.8 V. Assume teq = 13 nm and the implanted arsenic to have a fully ionized impulse profile located at the silicon surface.

  14. 14.

    The gate, source, and drain of a PMOS are degenerately doped, and the gate oxide thickness is 12.5 nm. Approximate the field in the oxide in the overlapped drain region for the following cases:

    1. (a)

      The drain is at ground and the gate is P+-poly at 5 V.

    2. (b)

      The drain is at ground and the gate is N+-poly at 5 V.

    3. (c)

      The gate is P+-poly at ground and the drain is at 5 V.

    4. (d)

      The gate is N+-poly at ground and the drain is at 5 V.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Kareh, B., Hutter, L.N. (2020). Analog/RF CMOS. In: Silicon Analog Components. Springer, Cham. https://doi.org/10.1007/978-3-030-15085-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15085-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15084-6

  • Online ISBN: 978-3-030-15085-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics