Skip to main content

Rectifying and Ohmic Contacts

  • Chapter
  • First Online:
Silicon Analog Components
  • 1100 Accesses

Abstract

A contact between metal and silicon can be rectifying or ohmic. The most commonly used rectifying contact is the Schottky barrier diode (SBD). Because of its fast response to signals, the SBD has found several applications in analog circuits where switching speed is important. A contact is said to be ohmic, i.e., non-rectifying, if it exhibits negligible resistance to current in both voltage polarities. Most semiconductor devices are interconnected on the chip and brought to the “outside world” by means of ohmic contacts and metal wires. Understanding the physical nature of contacts and methods to reduce their resistance is becoming increasingly important as contact dimensions are reduced. The first part of this chapter discusses SBD properties, characterization, and applications. The second part describes the formation and characterization of ohmic contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless otherwise stated, E, EF, Ei, EC, EV, Eg represent energies in eV; ϕ, ψ, χ represent potentials in V. Energies and potentials will then have the same numerical values but different units. Example: At 25 °C, kT ≅ 0.026 eV, kT/q ≅ 0.026 V.

  2. 2.

    The combined potential energy due to depleted charge in silicon and approaching single electron reaches its maximum (saddle point) at \( \Delta x=\sqrt{q/\left(16{\pi \varepsilon}_0{\varepsilon}_{\mathrm{Si}}{\mathbf{E}}_{\mathrm{peak}}\right)} \).

  3. 3.

    Latch-up is discussed in Chap. 11.

References

  1. W. Schottky, “Halbleitertheorie der Sperrschicht,” Naturwissenschaften, 26, 843, 1938; Z. Phys. 113, 367–414, 1939; 118, 539–592, 1942

    Article  MATH  Google Scholar 

  2. F. Braun, Ueber die Stromleitung durch Schwefelmetalle. Ann. Phys. J. C. Poggendorff. Phys. Chem. 153, 556–563 (1874)

    Google Scholar 

  3. F. Braun, Ueber Abweichungen vom Ohm’schen Gesetz in metallisch leitenden Koerpern. Ann. Phys. G. Wiedemann 1, 95–110 (1877)

    Article  Google Scholar 

  4. C. A. Mead, Physics of interfaces, on Ohmic Contacts to Semiconductors, B. Schwartz, Ed. New York, Electrochem. Soc., 1969

    Google Scholar 

  5. H.K. Henisch, Rectifying Semiconductor Contacts (Clarendon Press, Oxford, 1957)

    MATH  Google Scholar 

  6. V.L. Rideout, A review of the theory, technology and applications of metal–semiconductor rectifiers. Thin Solid Films 48(3), 261–291 (1978)

    Article  MathSciNet  Google Scholar 

  7. M.M. Atalla, Metal-semiconductor Schottky barriers, devices and applications, in Proc. Munich Symp. On Microelectronics, (October 1966), pp. 123–157

    Google Scholar 

  8. CRC Handbook of Physics and Chemistry, 12124, 2012

    Google Scholar 

  9. J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71(10), 717–727 (1947)

    Article  MathSciNet  Google Scholar 

  10. W. Shockley, On the surface states associated with a periodic potential. Phys. Rev. 56(4), 317–323 (1939)

    Article  MATH  Google Scholar 

  11. W.H. Brattain, W. Shockley, Density of surface states on silicon deduced from contact potential measurements. Phys. Rev. 72, 345 (1947)

    Google Scholar 

  12. A.M. Cowley, S.M. Sze, Surface sates and barrier height of metal-semiconductor systems. J. Appl. Phys. 36(10), 3212–3220 (1965)

    Article  Google Scholar 

  13. K.E. Moselund, J.E. Freiermuth, P. Dainesi, A.M. Ionescu, Experimental study of the process dependence of Mo, Cr, Ti, and W silicon Schottky diodes and contact resistance. IEEE Trans. Electron Dev. 53(4), 712–718 (2006)

    Article  Google Scholar 

  14. J. Robertson, L. Lin, Fermi level pinning in Si, Ge and GaAs systems – MIGS or defects? IEEE IEDM Tech. Digest, 119–122 (2009)

    Google Scholar 

  15. C.R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes. Solid State Electron. 8(4), 395–399 (1965)

    Article  Google Scholar 

  16. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  17. E.H. Rhoderick, The physics of Schottky barriers, in Third Solid-State Device Conf., Pp. 1153–1168, Exeter, (1969)

    Google Scholar 

  18. A.J. Dekker, Solid State Physics (Prentice-Hall, 1965)

    Google Scholar 

  19. V.L. Rideout, C.R. Crowell, Effects of image force and tunneling on current transport in metal-semiconductor (Schottky barrier) contacts. Solid State Electron. 13(7), 993–1009 (1970)

    Article  Google Scholar 

  20. D.L. Scharfetter, Minority carrier injection and charge storage in epitaxial Schottky barrier diodes. Solid State Electron. 8(3), 299–211 (1965)

    Article  Google Scholar 

  21. C.D. Lien, E.C.T. So, M.A. Nicolet, An improved forward I-V method for non-ideal Schottky diodes with high series resistance. IEEE Trans. Electron Dev. ED-31(10), 1502–1503 (1984)

    Article  Google Scholar 

  22. H. Norde, A modified I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50(7), 5052–5053 (1979)

    Article  Google Scholar 

  23. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, 1998)

    Google Scholar 

  24. C.A. Mead, Metal-semiconductor surface barriers. Solid State Electron. 9(11), 1023–1033 (1966)

    Article  Google Scholar 

  25. A.Y.C. Yu, Characteristics of aluminum-silicon Schottky barrier diodes. IEEE IEDM Tech. Digest, 140–140 (1969)

    Google Scholar 

  26. H. Card, Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electron Dev. ED-23(6), 538–544 (1976)

    Article  Google Scholar 

  27. D. Dascalu, G. Brezeaunu, P.A. Dan, C. Dima, Modeling electrical behavior of nonuniform Al-Si Schottky diodes. Solid State Electron. 24(10), 897–904 (1981)

    Article  Google Scholar 

  28. D. Kahng, Conduction properties of the au-n-type-Si Schottky barrier. Solid State Electron. 6(3), 281–295 (1963)

    Article  Google Scholar 

  29. S.S. Li, J.S. Kim, K.L. Wang, Enhancement of effective barrier height in Ti-silicon Schottky diode using low-energy ion implantation. IEEE Trans. Electron Dev. ED-27(7), 1310–1312 (1980)

    Article  Google Scholar 

  30. A.M. Cowley, Titanium-silicon Schottky barrier diodes. Solid State Electron. 13(4), 403–414 (1970)

    Article  Google Scholar 

  31. C.R. Crowell, J.C. Sarace, S.M. Sze, Tungsten-semiconductor Schottky barrier diodes. Trans. Metall. Soc. AIME 233, 478–481 (1965)

    Google Scholar 

  32. P.E. Schmid, P.S. Ho, T.Y. Tan, Summary abstract: Correlation between Schottky barrier height and phase stoichiometry/structure of silicide–silicon interfaces. J. Vac. Sci. Technol. 20(3), 688–689 (1982)

    Article  Google Scholar 

  33. R.J. Purtell, G. Hollinger, G.W. Rubloff, P.S. Ho, Schottky barrier formation. J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 1(2), 566–569 (1983)

    Article  Google Scholar 

  34. C. Mallardeau, Y. Morand, E. Abonneau, Characterization of TiSi2 ohmic and Schottky contacts formed by rapid thermal annealing technology. J. Electrochem. Soc. 136(1), 238–241 (1989)

    Article  Google Scholar 

  35. E. Barbarini, S. Ferrero, C.F. Pirri, Electrical characterization of self-aligned titanium silicide SBDs formed by furnace annealing. IEEE EDSSC, 1–4 (2010)

    Google Scholar 

  36. N. J. Woods and S. Hall, “Self-Aligned Cobalt Disilicide/Silicon Schottky Barrier Diodes,” ESSDERC, 517–520, 1995

    Google Scholar 

  37. S. Zhu, R.L. Meirhaeghe, C. Detavernier, F. Cardon, G.P. Ru, X.P. Qu, B.Z. Li, Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111). Solid State Electron. 44(1), 663–671 (2000)

    Article  Google Scholar 

  38. S. Sankaran, K. O, Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Dev. Lett. 26(7), 492–494 (2005)

    Article  Google Scholar 

  39. E. Alptekin, M.C. Ozturk, V. Misra, Tuning of the platinum silicide Schottky barrier height on n-type silicon by sulfur segregation. IEEE Electron Dev. Lett. 38(4), 331–333 (2009)

    Article  Google Scholar 

  40. S.M. Woodruff, N.S. Dellas, B.Z. Liu, S.M. Eichfeld, T.S. Mayer, J.M. Redwing, S.E. Mohney, Nickel and nickel silicide Schottky barrier contacts to n-type silicon nanowires. J. Vac. Sci. Technol. B: Micorelectronics and Nanometer Structures 26(4), 1592–1596 (2008)

    Article  Google Scholar 

  41. E. Alptekin, M.C. Ozturk, Tuning of the nickel silicide Schottky barrier height on p-type silicon by indium implantation. IEEE Electron Dev. Lett. 30(12), 1372–1374 (2009)

    Google Scholar 

  42. M. Morschbach, A. Mueller, C. Schoellhorn, M. Oehme, T. Buck, E. Kasper, Integrated silicon Schottky mixer diodes with cutoff frequencies above 1 THz. IEEE Trans. Microwave Theory and Techniques 55, 2005(6), 2013–2018

    Article  Google Scholar 

  43. K. Shenai, Effect of arsenic implantation on electrical characteristics of LPCVD WSi2/n-Si Schottky contacts. IEEE Trans. Electron Dev. 38(9), 2033–2035 (1991)

    Article  Google Scholar 

  44. Y. Yamamoto, H. Miyanaga, T. Amazawa, T. Sakai, A MoSi2 Schottky diode for bipolar LSI’s. IEEE Trans. Electron Dev. ED-32(7), 1231–1239

    Article  Google Scholar 

  45. R. Aldrich, Low storage Schottky-barrier diode transistor. IEEE IEDM Tech. Digest, 241–241 (1968)

    Article  Google Scholar 

  46. J.E. Price, A high-speed integrated Schottky diode transistor logic circuit. IRDM Tech. Digest, 241–242 (1968)

    Google Scholar 

  47. E.R. Chenette, R.A. Petersen, R. Edwards, J.J. Kleimack, Integrated Schottky-diode clamp for transistor storage time control. Proc. IEEE 56(2), 232–233 (1968)

    Article  Google Scholar 

  48. F.J. Huang, K.K. O, Schottky-clamped NMOS transistors implemented in a conventional 0.8-μm CMOS process. IEEE Electron Dev. Lett. 19(9), 326–328 (1998)

    Article  Google Scholar 

  49. Alan Holden, consultant, private communication June, 2013

    Google Scholar 

  50. M.P. Lepselter, S.M. Sze, SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain. Proceeding of the IEEE 58(8), 1400–1402 (1968)

    Article  Google Scholar 

  51. F.J. Huang, K.K. O, Metal-oxide semiconductor field-effect transistors using Schottky barrier drains. Electronics Lett. 33(15), 1341–1342 (1997)

    Article  Google Scholar 

  52. A. Balijepalli, J. Ervin, P. Joshi, J. Yang, C. Yyu, T.J. Thornton, High-voltage CMOS compatible SOI MESFET characterization and spice model extraction, in Microwave Symp. Digest, (2006), pp. 1335–1338

    Google Scholar 

  53. A.Y.C. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers. Solid State Electron. 13(2), 239–247 (1970)

    Article  Google Scholar 

  54. F.A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9(7), 695–707 (1966)

    Article  Google Scholar 

  55. D.K. Schroeder, D.L. Meier, Solar cell contact resistance – A review. IEEE Trans. Electron Dev. ED-31(5), 637–647 (1984)

    Article  Google Scholar 

  56. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1998) Chapter 3 and references therein

    Google Scholar 

  57. D.P. Kennedy, P.C. Murley, A two-dimensional mathematical analysis of the diffused semiconductor resistor. IBM J. Res. Develop. 12, 242–250 (1968)

    Article  MATH  Google Scholar 

  58. H. Murrmann, D. Widmann, Current crowding on metal contacts to planar devices. IEEE Trans. Electron Dev., ED 16, 1022–1024 (1969)

    Article  Google Scholar 

  59. H.H. Berger, Models for contacts to planar devices. Solid State Electron. 15(2), 145–158 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. 1.

    A CoSi2 Schottky barrier diode of effective barrier height ϕB = 0.60 V and area 50 × 50 μm2 is formed on a uniformly N-type silicon of concentration ND = 2 × 1016 cm−3. Assume thermal equilibrium at 300 K and find

    1. (a)

      The depletion width in silicon

    2. (b)

      The peak field

    3. (c)

      The diode capacitance

    4. (d)

      The barrier seen by bulk electrons at the bottom of the conduction band

  2. 2.

    The forward characteristic in Fig. P2 was obtained on a SBD of area 2.5 × 10−5 cm2 at 300 K. Find the ideality factor, the barrier height, and the series resistance of the diode.

    Fig. P2
    figure 33

    The ideality factor, the barrier height, and the series resistance of the diode

  3. 3.

    Consider the structure in Fig. P3. The silicide contacting the P-region extends into the N-region to form a SBD of barrier height 0.6 V and ideality factor n = 1.04. A forward-biased voltage of 0.5 V is applied to both the P-region and SBD. The temperature is 300 K, the PN junction area is 10 μm2, the N-region is uniformly doped at ND = 5 × 1016 cm−3, and the injected minority carriers from the P-region immediately recombine when they reach the buried N+-layer.

    Fig. P3
    figure 34

    The silicide contacting the P-region extends into the N-region to form a Schottky barrier diode

    1. (a)

      Find the SBD area that is necessary to ensure that only 1% of the forward current consists of minority-carrier injection from the P-region.

    2. (b)

      Estimate the leakage current for a reverse voltage of 2.5 V applied to both diodes. Neglect surface effects.

  4. 4.

    The room temperature capacitance of a reverse-biased SBD of area 100 × 100 μm2 is 5.09 pF at VR = 1 V and 2.73 pF at VR = 5 V. Knowing that silicon is N-type and uniformly doped, find the dopant concentration ND and the SBD barrier height ϕB.

  5. 5.

    A contact chain of the type described in Fig. 4.32 is designed on a P-well having a concentration NA = 1017 cm−3. The chain contains of 1000 links, each link consisting of one N+-diffusion of width W = 2 μm and two contacts at a space s = 1 μm between contacts. The sheet resistance of the N+-diffusion is 36 Ω/□. To extract the average contact resistance, 1 mA is forced between the chain end terminals and the voltage measured between the terminals. Why would this test give erroneous results?

  6. 6.

    A SBD of area 4 × 10−6 cm2 is formed on N-type silicon of concentration ND = 1016 cm−3. The barrier height at zero applied voltage is 0.45 V. Assume that barrier lowering follows the relation in (4.13) and estimate the room temperature leakage current at a reverse voltage VR = 5 V.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Kareh, B., Hutter, L.N. (2020). Rectifying and Ohmic Contacts. In: Silicon Analog Components. Springer, Cham. https://doi.org/10.1007/978-3-030-15085-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15085-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15084-6

  • Online ISBN: 978-3-030-15085-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics