Skip to main content

Part of the book series: Studies in Big Data ((SBD,volume 54))

  • 885 Accesses

Abstract

This chapter introduces the general definition and concept of environmental model. It describes adequately the different aspects of environmental model as it appears in different fields of academic and professional endeavours. It illustrates conceptual shortcoming of the subject-matter. Also, the dynamism of the environmental was considered with a specific example on atmospheric aerosol model (AAM). AAM is regarded as one of the most complex environmental model whose formulation, dispersion, transport and properties are exceptionally dynamic. Various examples on the AAM was considered for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmada, O. A. (2011). Modeling the dispersion of atmospheric pollutants dispersion using two dimensional advection diffusion equation, masters project submitted to University of Dar es Salaam, pp. 1–88.

    Google Scholar 

  • Akinyemi, M. L., Emetere, M. E., & Usikalu, M. R. (2016). Virtual assessment of air pollution dispersion from anthropogenic sudden explosion. American Journal of Environmental Sciences, 12(2), 94–101.

    Article  Google Scholar 

  • Bai, F., Yang, Z., Huai, W., & Zheng, C. (2016). A depth-averaged two dimensional shallow water model to simulate flow-rigid vegetation interactions. Procedia Engineering, 154, 482–489.

    Article  Google Scholar 

  • Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). Application of a fractional advection-dispersion equation. Water Resources Research, 36(6), 1403–1412.

    Article  Google Scholar 

  • Bobba, A. G., Vijay, P. S., & Lars, B. (2000). Application of environmental models to different hydrological systems. Ecological Modelling, 125(1), 15–49.

    Article  Google Scholar 

  • Bhatt, D., & Mall R. K. (2015). Surface Water Resources, Climate Change and Simulation Modeling. Aquatic Procedia 4, 730–738.

    Google Scholar 

  • Choo-in, S. (2001). Mathematical model for determining carbon monoxide and nitrogen oxide concentration in street tunnel. M.Sc. Research, Thammasat University, Thailand. pp. 1–67.

    Google Scholar 

  • Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K, Nhuan, M.T., Qin, D., & Woodworth, P. L. (2001). Changes in sea level. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden & D. Xiaosu (Eds.), Climate change 2001. The scientific basis (pp. 639–693). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cullen, A. C., & Frey, H. C. (1999). Probabilistic techniques in exposure assessment: A handbook for dealing with variability and uncertainty in models and inputs. New York: Plenum.

    Google Scholar 

  • Daitche, A., & Tamás, T. (2014). Memory effects in chaotic advection of inertial particles. New Journal of Physics, 16(073008), 1–35.

    Google Scholar 

  • DBW. (2018). Environmental modelling. https://www.designingbuildings.co.uk/wiki/Environmental_modelling. Accessed February 24th, 2018.

  • Delft3D. (2018). Flexible mesh—Environmental modelling. https://www.deltares.nl/academy/delft3d-block-2a/. Accessed February 24th, 2018.

  • Devine, J. D., Sigurdsson, H., Davis, A. N., & Self, S. (1984). Estimates of sulfur and chlorine yield to the Atmosphere from volcanic eruptions and potential climatic effects. Journal Geophysical Research, 89, 6309–6325. https://doi.org/10.1029/JB089iB07p06309.

    Article  Google Scholar 

  • Edwards, J. B., McKinnon, A. C., & Cullinane, S. L. (2009). Carbon auditing the ‘Last Mile’: Modelling the environmental impacts of conventional and online non-food shopping. http://www.greenlogistics.org/SiteResources/ee164c78-74d3-412f-bc2a-024ae2f7fc7e_FINAL%20REPORT%20Online-Conventional%20Comparison%20%28Last%20Mile%29.pdf.

  • Emetere, M. E. (2014). Forecasting hydrological disaster using environmental thermographic modeling. Advances in Meteorology, 2014, 783718.

    Article  Google Scholar 

  • Emetere, M. E. (2016). Statistical examination of the aerosols loading over mubi-Nigeria: The satellite observation analysis. Geographica Panonica, 20(1), 42–50.

    Article  Google Scholar 

  • Emetere, M. E. (2017a). Investigations on aerosols transport over micro- and macro-scale settings of West Africa. Environmental Engineering Research, 22(1), 75–86.

    Article  Google Scholar 

  • Emetere, M. E. (2017b). Lightning as a source of electricity: Atmospheric modeling of electromagnetic fields. International Journal of Technology, 8, 508–518.

    Article  Google Scholar 

  • Emetere, M. E. (2017c). Impacts of recirculation event on aerosol dispersion and rainfall patterns in parts of Nigeria. Global Nest Journal, 19(2), 344–352.

    Article  Google Scholar 

  • Emetere, M. E. (2017d). Monitoring the 3-year thermal signatures of the Calbuco pre-volcano eruption event. Arabian Journal of Geoscience, 10, 94. https://doi.org/10.1007/s12517-017-2861-z.

    Article  Google Scholar 

  • Emetere, M. E., & Akinyemi, M. L. (2017). Documentation of atmospheric constants over Niamey, Niger: A theoretical aid for measuring instruments. Meteorological Applications, 24(2), 260–267.

    Article  Google Scholar 

  • Emetere, M. E. & Akinyemi, M. L. (2018). Sea level change in seven stations on the upper Atlantic: Implication on environments. Journal of Physics: Conference Series.

    Google Scholar 

  • Emetere, M. E., Akinyemi, M. L., & Edeghe, E. B. (2016). A simple technique for sustaining solar energy production in active convective coastal regions. International Journal of Photoenergy, 2016(3567502), 1–11. https://doi.org/10.1155/2016/3567502.

    Article  Google Scholar 

  • EVO. (2018). Environmental models. http://www.evo-uk.org/at-the-outset/evo-cloud-services-portals/environmental-models/. Accessed February 24th, 2018.

  • FA. (2018). Models—Aviation environmental tools suite. https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/. Accessed February 24th, 2018.

  • Faccani, C., Rabier, F., Fourrie, N., Agust´ı-Panareda, A., Karbou, F., Moll, P., et al. (2009). The impact of the AMMA radiosonde data on the French global assimilation and forecast system. Weather and Forecasting, 24, 1268–1286.

    Google Scholar 

  • FES. (2018). Environmental modelling. https://www.fzp.czu.cz/en/r-9408-study/r-9495-study-programmes/r-9745-master-s-degree-programmes/r-9753-environmental-modelling. Accessed February 24th, 2018.

  • Ghumman, A. R., Yousry, M., Ghazaw, A. R., & Sohail, K. W. (2011). Runoff forecasting by artificial neural network and conventional model. Alexandria Engineering Journal, 50(4), 345–350.

    Article  Google Scholar 

  • Giuseppina, G. (2013). How far chemistry and toxicology are computational sciences? In Methods and experimental techniques in computer engineering (pp. 15–33). https://doi.org/10.1007/978-3-319-00272-9_2.

  • Gupta, V. R., & Jangid, R. A. (2011). The effect of bulk density on emission behaviour of soil at microwave frequencies. International Journal of Microwave Science and Technology, 160129, 1–6.

    Article  Google Scholar 

  • Guwahati IIT. (2014). Advection-dispersion equation for solute transport in porous media. https://nptel.ac.in/courses/105103026/32. Accessed August 20th, 2018.

  • Hämäläinen, R. P. (2015). Behavioral issues in environmental modelling—The missing perspective. Environmental Modelling and Software, 73, 244–253.

    Article  Google Scholar 

  • Hauduc, H., Neumann, M. B., Muschalla, D., Gamerith, V., Gillot, S., & Vanrolleghem, P. A. (2015). Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment. Environmental Modelling and Software, 68, 196–204.

    Article  Google Scholar 

  • He, Q., Li, C., Geng, F., Yang, H., Li, P., Li, T., et al. (2012). Aerosol optical properties retrieved from Sun photometer measurements over Shanghai, China. Journal of Geophysical Research, 117(D16204), 1–8.

    Google Scholar 

  • Holmes, N. S., & Morawska, L. (2006). A review of dispersion modeling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric Environment, 40(30), 5902–5928.

    Article  Google Scholar 

  • Hughes, A., Jackson, C., Mansour, M., Bricker, S., Barkwith, A., Williams, A., et al. (2011, May). Integrated modelling within the Thames Basin: Examples of BGS work (Poster). In Cities, catchments and coasts: Applied geoscience for decision-making in London and the Thames Basin. London, UK. http://nora.nerc.ac.uk/14267/.

  • Jinduan, C., & Dominic, L. B, (2018). Forecasting hourly water demands with seasonal autoregressive models for real‐time application. Water Resources Research, 54(2), 879–894.

    Google Scholar 

  • Johnston, J. M., McGarvey, D. J., Barber, M. C., Laniak, G., Babendreier, J.E., Parmar, R., et al. (2011). An integrated modeling framework for performing environmental assessments: Application to ecosystem services in the Albemarlee Pamlico basins (NC and VA, USA). Ecological Modelling, 222(14), 2471–2484.

    Google Scholar 

  • Lanzi, E. (2017). The economic consequence of outdoor air pollution. http://www.htap.org/meetings/2017/2017_May_2-3/presentations/10_TFIAM%20-%20Economic%20consequences%20of%20air%20pollution%20v2.pdf.

  • Liu, Y., Wang, Z., Wang, J., Ferrare, R., Newsom, R., & Welton, E. (2011). The effect of aerosol vertical profiles on satellite-estimated surface particle sulphate concentrations. Remote Sensing of Environment, 115(2), 508–513.

    Article  Google Scholar 

  • Logica. (2018). Enhancing waterfall process through V-model software development methodology. https://www.360logica.com/blog/enhancing-waterfall-process-through-v-model-software-development-methodology/. Accessed August 16th, 2018.

  • Min-Seop, A., & In-Sik, K. (2018). A practical approach to scale-adaptive deep convection in a GCM by controlling the cumulus base mass flux. Climate and Atmospheric Science, 1, 13.

    Article  Google Scholar 

  • Montibeller, G., & von Winterfeldt, D. (2015). Cognitive and motivational biases in decision and risk analysis. Risk Analysis, 35(7), 1230–1251.

    Article  Google Scholar 

  • National Research Council. (2007). Models in environmental regulatory decision making. Washington, DC: The National Academies Press. https://doi.org/10.17226/11972.

  • NOAA. (2015). http://www.esrl.noaa.gov/gmd/outreach/lesson_plans/. Accessed June 23rd, 2015.

  • OECD. (2014). The cost of air pollution: Health impacts of road transport. Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264210448-en.

  • OECD. (2015). The economic consequences of climate change. Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264235410-en.

  • Ogola, P. F. A. (2007). Environmental impact assessment general procedures. Paper pre-sented at short course II on Surface Exploration for Geothermal Resources. Lake Naivasha: UNU-GTP and KENGEN, Kenya.

    Google Scholar 

  • Rotmans, J., & van Asselt, M. B. A. (2001). Uncertainty management in integrated assessment modeling: Towards a pluralistic approach. Environmental Monitoring and Assessment, 69(2), 101–130.

    Article  Google Scholar 

  • Samiksha, S. (2017). Top 21 specialized branches of ecology—Discussed! http://www.yourarticlelibrary.com/environment/top-21-specialized-branches-of-ecology-discussed/3801. Accessed December 30th, 2017.

  • Seddon, A. W. R., et al. (2013). Looking forward through the past: Identification of 50 priority research questions in palaeoecology. Journal of Ecology, 102(1), 256–267.

    Article  Google Scholar 

  • Shawn, M. L., Babendreier, J. E., & Thomas Purucker, S. (2009). Valuating uncertainty in integrated environmental models: A review of concepts and tools. Water Resources Research, 45, W06421. https://doi.org/10.1029/2008WR007301.

    Article  Google Scholar 

  • Shettle, E. P., & Fenn, R. W. (1979). Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Environmental research papers, AFGL-TR-79-0214, No. 676, pp. 1–23.

    Google Scholar 

  • Sterman, J. D. (2002). All models are wrong: Reflections on becoming a systems scientist. System Dynamics Review, 18(4), 501–531.

    Article  Google Scholar 

  • Stockie, J. M. (2011). The mathematics of atmospheric dispersion modeling. SIAM Review, 53, 349–372.

    Article  MathSciNet  Google Scholar 

  • Strong Todd, J., & Zundel Alan, K. (2014). Limitations of one-dimensional surface water models. Journal of Undergraduate Research. http://jur.byu.edu/?p=10582.

  • Sun T. Y., Gottschalk F., Hungerbuhler K., & Nowack B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental pollution, 185, 69–76.

    Google Scholar 

  • Thongmoon, M., McKibbin, R., & Tangmanee, S. (2007). Numerical solution of a 3-D advection-dispersion model for pollutant transport. Thai Journal of Mathematics, 5(1), 91–108.

    MathSciNet  MATH  Google Scholar 

  • WIKI. (2018). Environmental niche modelling. https://en.wikipedia.org/wiki/Environmental_niche_modelling. Accessed February 24th, 2018.

  • Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—A decision support tool for the assessment of regional climate change impacts. Environmental Model and Software, 17, 147–159.

    Article  Google Scholar 

  • Xiang, P., Geng, L., Zhou, K., & Cheng, X. (2017). Adverse effects and theoretical frameworks of air pollution: An environmental psychology perspective. Advances in Psychological Science, 25(4), 691–700.

    Article  Google Scholar 

  • Yoshioka, H., Koichi, U., & M, Fujihara. (2014). A finite element/volume method model of the depth-averaged horizontally 2D shallow water equations. International Journal for Numerical Methods in Fluids, 75(1), 23–41.

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Di, X., Li, Y., & Bai, M. (2013). One-dimensional coupled model of surface water flow and solute transport for basin fertigation. Journal of Irrigation and Drainage Engineering, 139(3), 1–8. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000376.

    Article  Google Scholar 

  • Zhang, T., Ning, Xu, L., Guo, Y. H., & Yong, B. (2014). A global atmospheric contaminant transport model based on 3D advection-diffusion equation. Journal of Clean Energy Technologies, 2(1), 43–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moses Eterigho Emetere or Moses Eterigho Emetere .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Emetere, M.E. (2019). Introduction to Environmental Modelling. In: Environmental Modeling Using Satellite Imaging and Dataset Re-processing. Studies in Big Data, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-030-13405-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13405-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13404-4

  • Online ISBN: 978-3-030-13405-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics