Skip to main content

Masonry Compressive Strength Prediction Using Artificial Neural Networks

  • Conference paper
  • First Online:
Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage (TMM_CH 2018)

Abstract

The masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ACI/TMS 122R-14: Guide to Thermal Properties of Concrete and Masonry Systems, Reported by ACI/TMS Committee 122, December 2014

    Google Scholar 

  2. Engesser, F.: Über weitgespannte wölbbrücken. Z. Architekt. Ing.-wesen 53, 403–440 (1907)

    Google Scholar 

  3. Syrmakezis, C.A., Asteris, P.G.: Masonry failure criterion under biaxial stress state. J. Mater. Civ. Eng. 13(1), 58–64 (2001)

    Article  Google Scholar 

  4. Lourenço, P.: Computations on historic masonry structures. Prog. Struct. Mat. Eng. 4(3), 301–319 (2002)

    Article  Google Scholar 

  5. Milani, G., Lourenço, P.B., Tralli, A.: Homogenised limit analysis of masonry walls, part I: failure surfaces. Comput. Struct. 84(3–4), 66–180 (2006)

    Google Scholar 

  6. Asteris, P.G., Antoniou, S.T., Sophianopoulos, D.S., Chrysostomou, C.Z.: Mathematical macromodeling of infilled frames: state of the art. J. Struct. Eng. 137(12), 1508–1517 (2011)

    Article  Google Scholar 

  7. Chrysostomou, C.Z., Asteris, P.G.: On the in-plane properties and capacities of infilled frames. Eng. Struct. 41, 385–402 (2012)

    Article  Google Scholar 

  8. Asteris, P.G., Cotsovos, D.M., Chrysostomou, C.Z., Mohebkhah, A., Al-Chaar, G.K.: Mathematical micromodeling of infilled frames: state of the art. Eng. Struct. 56, 1905–1921 (2013)

    Article  Google Scholar 

  9. Asteris, P.G., et al.: Seismic vulnerability assessment of historical masonry structural systems. Eng. Struct. 62–63, 118–134 (2014)

    Article  Google Scholar 

  10. Kaushik, H.B., Rai, D.C., Jain, S.K.: Stress-strain characteristics of clay brick masonry under uniaxial compression. J. Mater. Civ. Eng. 19(9), 728–739 (2007)

    Article  Google Scholar 

  11. Thomas, J.: Concrete block reinforced masonry wall panels subjected to out-of-plane monotonic lateral loading. In: Proceedings of National Conference on Recent Advances in Structural Engineering, Hyderabad, India, pp. 123–129, February 2006

    Google Scholar 

  12. Thaickavil, N.N., Thomas, J.: Behaviour and strength assessment of masonry prisms. Case Stud. Constr. Mater. 8, 23–38 (2018)

    Google Scholar 

  13. SP 20 (S&T): Handbook on Masonry Design and Construction. Bureau of Indian Standards, New Delhi (1991)

    Google Scholar 

  14. Alexandridis, A.: Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 23, 1350029 (2013)

    Article  Google Scholar 

  15. Dias, W.P.S., Pooliyadda, S.P.: Neural networks for predicting properties of concretes with admixtures. Constr. Build. Mater. 15, 371–379 (2001)

    Article  Google Scholar 

  16. Lee, S.C.: Prediction of concrete strength using artificial neural networks. Eng. Struct. 25, 849–857 (2003)

    Article  Google Scholar 

  17. Topçu, I.B., Saridemir, M.: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 41, 305–311 (2008)

    Article  Google Scholar 

  18. Trtnik, G., Kavčič, F., Turk, G.: Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 49, 53–60 (2009)

    Article  Google Scholar 

  19. Waszczyszyn, Z., Ziemiański, L.: Neural networks in mechanics of structures and materials—new results and prospects of applications. Comput. Struct. 79, 2261–2276 (2001)

    Article  Google Scholar 

  20. Douma, O.B., Boukhatem, B., Ghrici, M., Tagnit-Hamou, A.: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 28, 1–12 (2016). https://doi.org/10.1007/s00521-016-2368-7

    Article  Google Scholar 

  21. Mashhadban, H., Kutanaei, S.S., Sayarinejad, M.A.: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr. Build. Mater. 119, 277–287 (2016)

    Article  Google Scholar 

  22. Açikgenç, M., Ulaş, M., Alyamaç, K.E.: Using an artificial neural network to predict mix compositions of steel fiber-reinforced concrete. Arab. J. Sci. Eng. 40, 407–419 (2015)

    Article  Google Scholar 

  23. Asteris, P.G., Kolovos, K.G., Douvika, M.G., Roinos, K.: Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 20, s102–s122 (2016)

    Article  Google Scholar 

  24. Baykasoǧlu, A., Dereli, T.U., Taniş, S.: Prediction of cement strength using soft computing techniques. Cem. Concr. Res. 34, 2083–2090 (2004)

    Article  Google Scholar 

  25. Akkurt, S., Tayfur, G., Can, S.: Fuzzy logic model for the prediction of cement compressive strength. Cem. Concr. Res. 34, 1429–1433 (2004)

    Article  Google Scholar 

  26. Özcan, F., Atiş, C.D., Karahan, O., Uncuoğlu, E., Tanyildizi, H.: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 40, 856–863 (2009)

    Article  MATH  Google Scholar 

  27. Saridemir, M.: Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Adv. Eng. Softw. 40(9), 920–927 (2009)

    Article  MATH  Google Scholar 

  28. Eskandari-Naddaf, H., Kazemi, R.: ANN prediction of cement mortar compressive strength, influence of cement strength class. Constr. Build. Mater. 138, 1–11 (2017)

    Article  Google Scholar 

  29. Oh, T.-K., Kim, J., Lee, C., Park, S.: Nondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural network. J. Adv. Concr. Technol. 15, 94–102 (2017)

    Article  Google Scholar 

  30. Khademi, F., Akbari, M., Jamal, S.M., Nikoo, M.: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front. Struct. Civ. Eng. 11, 90–99 (2017)

    Article  Google Scholar 

  31. Türkmen, İ., Bingöl, A.F., Tortum, A., Demirboğa, R., Gül, R.: Properties of pumice aggregate concretes at elevated temperatures and comparison with ANN models. Fire Mater. 41, 142–153 (2017)

    Article  Google Scholar 

  32. Nikoo, M., Zarfam, P., Sayahpour, H.: Determination of compressive strength of concrete using self organization feature map (SOFM). Eng. Comput. 31, 113–121 (2015)

    Article  Google Scholar 

  33. Adeli, H.: Neural networks in civil engineering: 1989–2000. Comput.-Aided Civ. Infrastruct. Eng. 16, 126–142 (2001)

    Article  Google Scholar 

  34. Safiuddin, M., Raman, S.N., Salam, M.A., Jumaat, M.Z.: Modeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ash. Materials 9, 396 (2016)

    Article  Google Scholar 

  35. Mansouri, I., Kisi, O.: Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Compos. Part B Eng. 70, 247–255 (2015)

    Article  Google Scholar 

  36. Mansouri, I., Gholampour, A., Kisi, O., Ozbakkaloglu, T.: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques. Neural Comput. Appl. 29, 1–16 (2016). https://doi.org/10.1007/s00521-016-2492-4

    Article  Google Scholar 

  37. Reddy, T.C.S.: Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network. Front. Struct. Civ. Eng. 12, 1–14 (2017). https://doi.org/10.1007/s11709-017-0445-3

    Article  Google Scholar 

  38. Salehi, H., Burgueño, R.: Emerging artificial intelligence methods in structural engineering. Eng. Struct. 171, 170–189 (2018)

    Article  Google Scholar 

  39. Bröcker, O.: Die auswertung von tragfähigkeitsversuchen an gemauerten wänden. Betonstein-Ztg. 10, 19–21 (1963)

    Google Scholar 

  40. Mann, W.: Statistical evaluation of tests on masonry by potential functions. In: Proceedings of the Sixth International Brick Masonry Conference, Rome, Italy, May 1982, pp. 86–98 (1982)

    Google Scholar 

  41. Hendry, A.W., Malek, M.H.: Characteristic compressive strength of brickwork walls from collected test results. Mason. Int. 7, 15–24 (1986)

    Google Scholar 

  42. Dayaratnam, P.: Brick and Reinforced Brick Structures. Oxford & IBH, New Delhi (1987)

    Google Scholar 

  43. Apolo, G.L., Matinez-Luengas, A.L.: Curso Técnicas de Intervención en El Patrimonio Arquitectonico. Consultores Tecnicos de Contstruccion (1995)

    Google Scholar 

  44. Bennett, R., Boyd, K., Flanagan, R.: Compressive properties of structural clay tile prisms. J. Struct. Eng. 123(7), 920–926 (1997)

    Article  Google Scholar 

  45. AS Committee 3700-2001. Masonry structures. Australian Standard Association, Sydney, 197 p. (2001)

    Google Scholar 

  46. Dymiotis, C., Gutlederer, B.M.: Allowing for uncertainties in the modelling of masonry compressive strength. Constr. Build. Mater. 16(2002), 443–452 (2002)

    Article  Google Scholar 

  47. EN 1996-1-1: Eurocode 6: design of masonry structures-Part 1-1: general rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels (2005)

    Google Scholar 

  48. Gumaste, K.S., Rao, K.S.N., Reddy, B.V.V., Jagadish, K.S.: Strength and elasticity of brick masonry prisms and wallettes under compression. Mater. Struct. 40(2), 241–253 (2007)

    Article  Google Scholar 

  49. Christy, C.F., Tensing, D., Shanthi, R.: Experimental study on axial compressive strength and elastic modulus of the clay and fly ash brick masonry. J. Civ. Eng. Constr. Technol. 4(4), 134–141 (2013)

    Google Scholar 

  50. Garzón-Roca, J., Marco, C.O., Adam, J.M.: Compressive strength of masonry made of clay bricks and cement mortar: estimation based on neural networks and fuzzy logic. Eng. Struct. 48(2013), 21–27 (2013)

    Article  Google Scholar 

  51. Sarhat, S.R., Sherwood, E.G.: The prediction of compressive strength of ungrouted hollow concrete block masonry. Constr. Build. Mater. 58, 111–121 (2014)

    Article  Google Scholar 

  52. Lumantarna, R., Biggs, D.T., Ingham, J.M.: Uniaxial compressive strength and stiffness of field-extracted and laboratory-constructed masonry prisms. J. Mater. Civ. Eng. 26(4), 567–575 (2014)

    Article  Google Scholar 

  53. Kumavat, H.R.: An experimental investigation of mechanical properties in clay brick masonry by partial replacement of fine aggregate with clay brick waste. J. Inst. Eng. India Ser. A 97(3), 199–204 (2016)

    Article  Google Scholar 

  54. British Standards Institution (BSI): BS EN 1996 (Eurocode 6): Design of Masonry Structures, British Standards Institution, p. 128 (2005)

    Google Scholar 

  55. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  MATH  Google Scholar 

  56. Plevris, V., Asteris, P.G.: Modeling of masonry compressive failure using neural networks. In: Proceedings of the OPT-i 2014—1st International Conference on Engineering and Applied Sciences Optimization, Kos, Greece, 4–6 June, pp. 2843–2861 (2014)

    Google Scholar 

  57. Plevris, V., Asteris, P.G.: Modeling of masonry failure surface under biaxial compressive stress using neural networks. Constr. Build. Mater. 55, 447–461 (2014)

    Article  Google Scholar 

  58. Plevris, V., Asteris, P.: Anisotropic failure criterion for brittle materials using artificial neural networks. In: Proceedings of the COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, 25–27 May 2015, pp. 2259–2272 (2015)

    Google Scholar 

  59. Giovanis, D.G., Papadopoulos, V.: Spectral representation-based neural network assisted stochastic structural mechanics. Eng. Struct. 84, 382–394 (2015)

    Article  Google Scholar 

  60. Asteris, P.G., Plevris, V.: Neural network approximation of the masonry failure under biaxial compressive stress. In: Proceedings of the 3rd South-East European Conference on Computational Mechanics (SEECCM III), an ECCOMAS and IACM Special Interest Conference, Kos Island, Greece, 12–14 June 2013, pp. 584–598 (2013)

    Google Scholar 

  61. Asteris, P.G., Plevris, V.: Anisotropic masonry failure criterion using artificial neural networks. Neural Comput. Appl. 28, 1–23 (2016). https://doi.org/10.1007/s00521-016-2181-3

    Article  Google Scholar 

  62. Asteris, P.G., Kolovos, K.G.: Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 1–16 (2017). https://doi.org/10.1007/s00521-017-3007-7

  63. Page, A.W.: The biaxial compressive strength of brick masonry. Proc. Instn. Civ. Engrs. 71(2), 893–906 (1981)

    Google Scholar 

  64. Ravula, M.B., Subramaniam, K.V.L.: Experimental investigation of compressive failure in masonry brick assemblages made with soft brick. Mater. Struct. 50(19), 1–11 (2017)

    Google Scholar 

  65. Singh, S.B., Munjal, P.: Bond strength and compressive stress-strain characteristics of brick masonry. J. Build. Eng. 9, 10–16 (2017)

    Article  Google Scholar 

  66. Zhou, Q., Wang, F., Zhu, F.: Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr. Build. Mater. 125, 199–204 (2016)

    Article  Google Scholar 

  67. Balasubramanian, S.R., et al.: Experimental determination of statistical parameters associated with uniaxial compression behaviour of brick masonry. Curr. Sci. 109(11), 2094–2102 (2015)

    Article  Google Scholar 

  68. Vindhyashree, Rahamath, A., Kumar, W.P., Kumar, M.T.: Numerical simulation of masonry prism test using ANSYS and ABAQUS. Int. J. Eng. Res. Technol. 4(7), 1019–1027 (2015)

    Google Scholar 

  69. Nagarajan, S., Viswanathan, S., Ravi, V.: Experimental approach to investigate the behaviour of brick masonry for different mortar ratios. In: Proceedings of the International Conference on Advances in Engineering and Technology, Singapore, March 2014, pp. 586–592 (2014)

    Google Scholar 

  70. Thamboo, J.A.: Development of thin layer mortared concrete masonry. Ph.D. dissertation, Queensland University of Technology, Brisbane (2014)

    Google Scholar 

  71. Vimala, S., Kumarasamy, K.: Studies on the strength of stabilized mud block masonry using different mortar proportions. Int. J. Emerg. Technol. Adv. Eng. 4(4), 720–724 (2014)

    Google Scholar 

  72. Reddy, B.V., Vyas, C.V.U.: Influence of shear bond strength on compressive strength and stress-strain characteristics of masonry. Mater. Struct. 41(10), 1697–1712 (2008)

    Article  Google Scholar 

  73. Mohamad, G., Lourenço, P.B., Roman, H.R.: Mechanics of hollow concrete block masonry prisms under compression: review and prospects. Cement Concrete Comp. 29(3), 181–192 (2007)

    Article  Google Scholar 

  74. Brencich, A., Gambarotta, L.: Mechanical response of solid clay brickwork under eccentric loading. Part I: unreinforced masonry. Mater. Struct. 38, 257–266 (2005)

    Article  Google Scholar 

  75. Bakhteri, J., Sambasivam, S.: Mechanical behaviour of structural brick masonry: an experimental evaluation. In: Proceedings of the 5th Asia - Pacific Structural Engineering and Construction Conference, Johor Bahru, Malaysia, August 2003, pp. 305–317 (2003)

    Google Scholar 

  76. Ip, F.: Compressive strength and modulus of elasticity of masonry prisms. Master of Engineering thesis, Carleton University, Ottawa (1999)

    Google Scholar 

  77. Hossain, M.M., Ali, S.S., Rahman, M.A.: Properties of masonry constituents. J. Civil Eng. Inst. Eng. Bangladesh 25(2), 135–155 (1997)

    Google Scholar 

  78. Vermeltfoort, A.T.: Compression properties of masonry and its components. In: Proceedings of the 10th International Brick and Block Masonry Conference, Calgary, Canada, vol. 3, pp. 1433–1442 (1994)

    Google Scholar 

  79. McNary, W., Abrams, D.: Mechanics of masonry in compression. J. Struct. Eng. 111(4), 857–870 (1985)

    Article  Google Scholar 

  80. Francis, A.J., Horman, A.A., Jerrems, L.E.: The effect of joint thickness and other factors on the compressive strength of brickwork. In: SIBMAC Proceedings of 2nd International Brick and Block Masonry Conference, Stoke on Trent, pp. 31–37 (1970)

    Google Scholar 

  81. IS: 383: Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete. Bureau of Indian Standards, New Delhi, India (1970)

    Google Scholar 

  82. IS: 2250: Indian Standard Code of Practice for Preparation and Use of Masonry Mortars. Bureau of Indian Standards, New Delhi, India (1981)

    Google Scholar 

  83. N.N. Common unified rules for masonry structures, Eurocode No. 6, CEN

    Google Scholar 

  84. Lourakis, M.I.A.: A brief description of the Levenberg-Marquardt algorithm Implemened by levmar, Hellas (FORTH). Institute of Computer Science Foundation for Research and Technology (2005). http://www.ics.forth.gr/~lourakis/levmar/levmar

  85. Asteris, P.G., Nozhati, S., Nikoo, M., Cavaleri, L., Nikoo, M.: Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct. (Article in press). https://doi.org/10.1080/15376494.2018.1430874

  86. Asteris, P.G., Roussis, P.C., Douvika, M.G.: Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors (Switzerland) 17(6), 1344 (2017)

    Article  Google Scholar 

  87. Cavaleri, L., et al.: Modeling of surface roughness in electro-discharge machining using artificial neural networks. Adv. Mater. Res. (South Korea) 6(2), 169–184 (2017)

    Google Scholar 

  88. Asteris, P.G., et al.: Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016, 12 (2016). 5104907

    Article  Google Scholar 

  89. Nikoo, M., Hadzima-Nyarko, M., Karlo Nyarko, E., Nikoo, M.: Determining the natural frequency of cantilever beams using ANN and heuristic search. Appl. Artif. Intell. 32(3), 309–334 (2018)

    Article  Google Scholar 

  90. Nikoo, M., Ramezani, F., Hadzima-Nyarko, M., Nyarko, E.K., Nikoo, M.: Flood-routing modeling with neural network optimized by social-based algorithm. Natural Hazards 82(1), 1–24 (2016)

    Article  Google Scholar 

  91. Nikoo, M., Sadowski, L., Khademi, F., Nikoo, M.: Determination of damage in reinforced concrete frames with shear walls using self-organizing feature map. Appl. Comput. Intell. Soft Comput. 2017, 10 (2017). 3508189

    Article  Google Scholar 

  92. Anscombe, F.J.: Graphs in statistical analysis. Am. Stat. 27(1), 17–21 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis G. Asteris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asteris, P.G. et al. (2019). Masonry Compressive Strength Prediction Using Artificial Neural Networks. In: Moropoulou, A., Korres, M., Georgopoulos, A., Spyrakos, C., Mouzakis, C. (eds) Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage. TMM_CH 2018. Communications in Computer and Information Science, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-12960-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12960-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12959-0

  • Online ISBN: 978-3-030-12960-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics