Skip to main content

Scaling Up the Process of Photo-Electrochemical Water Splitting

  • Chapter
  • First Online:
Testing Novel Water Oxidation Catalysts for Solar Fuels Production

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

This chapter will address the main issues related to the scaling up of a WS process. Currently, only few examples of pilot-scale water splitting (WS) devices are available in literature: low efficiencies and high costs are the main aspects that limit the use of this technology at industrial level, since results obtained at lab-scale are difficult to reproduce in larger configurations. The main factors that influence the device efficiency, which include activity and stability of catalysts and photoabsorbing materials, synthesis procedures, operational conditions and device configuration, will be examined. By the end of this chapter, a case of a pilot-scale photoelectrochemical (PEC) device will be presented and a prospective development of this technology will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sust Energ Rev 16(5):3024–3033. https://doi.org/10.1016/j.rser.2012.02.028

    Article  CAS  Google Scholar 

  2. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983–2002. https://doi.org/10.1039/c3ee40831k

    Article  CAS  Google Scholar 

  3. Kirner S, Bogdanoff P, Stannowski B, van de Krol R, Rech B, Schlatmann R (2016) Architectures for scalable integrated photo driven catalytic devices—a concept study. Int J Hydrog Energy 41(45):20823–20831. https://doi.org/10.1016/j.ijhydene.2016.05.088

    Article  CAS  Google Scholar 

  4. Jacobsson TJ, Fjallstrom V, Edoff M, Edvinsson T (2014) Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci 7(7):2056–2070. https://doi.org/10.1039/C4EE00754A

    Article  CAS  Google Scholar 

  5. Xiang C, Papadantonakis KM, Lewis NS (2016) Principles and implementations of electrolysis systems for water splitting. Mater Horiz 3(3):169–173. https://doi.org/10.1039/C6MH00016A

    Article  CAS  Google Scholar 

  6. Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100(2):410–426. https://doi.org/10.1109/JPROC.2011.2156750

    Article  CAS  Google Scholar 

  7. Tolod K, Hernández S, Russo N (2017) Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts 7(1):13

    Article  Google Scholar 

  8. Hernandez S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Tresso E, Saracco G (2015) Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Phys Chem Chem Phys 17(12):7775–7786. https://doi.org/10.1039/C4CP05857G

    Article  CAS  Google Scholar 

  9. Sivula K, Formal FL, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449. https://doi.org/10.1002/cssc.201000416

    Article  CAS  Google Scholar 

  10. Hilliard S, Baldinozzi G, Friedrich D, Kressman S, Strub H, Artero V, Laberty-Robert C (2017) Correction: mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol-gel dip coating approach. Sustain Energy Fuels 1(5):1204–1204. https://doi.org/10.1039/C7SE90017A

    Article  CAS  Google Scholar 

  11. Lee DK, Choi K-S (2018) Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy 3(1):53–60. https://doi.org/10.1038/s41560-017-0057-0

    Article  CAS  Google Scholar 

  12. Martinez Suarez C, Hernández S, Russo N (2015) BiVO4 as photocatalyst for solar fuels production through water splitting: a short review. Appl Catal A 504:158–170. https://doi.org/10.1016/j.apcata.2014.11.044

    Article  CAS  Google Scholar 

  13. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456. https://doi.org/10.1038/nmat3017

    Article  CAS  Google Scholar 

  14. Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22(6):2456–2464. https://doi.org/10.1039/c1jm14478b

    Article  CAS  Google Scholar 

  15. Ager JW, Shaner MR, Walczak KA, Sharp ID, Ardo S (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci 8(10):2811–2824. https://doi.org/10.1039/c5ee00457h

    Article  CAS  Google Scholar 

  16. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2000) Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B 104(38):8920–8924. https://doi.org/10.1021/jp002083b

    Article  CAS  Google Scholar 

  17. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204):1593–1596. https://doi.org/10.1126/science.1258307

    Article  CAS  Google Scholar 

  18. Torras C, Lorente E, Hernández S, Russo N, Salvadó J (2017) Hydrodynamics and oxygen bubble characterization of catalytic cells used in artificial photosynthesis by means of CFD. Fluids 2(2):25

    Article  Google Scholar 

  19. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  20. Hernández S, Gerardi G, Bejtka K, Fina A, Russo N (2016) Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. Appl Catal B 190:66–74. https://doi.org/10.1016/j.apcatb.2016.02.059

    Article  CAS  Google Scholar 

  21. Chen S, Wang L-W (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24(18):3659–3666. https://doi.org/10.1021/cm302533s

    Article  CAS  Google Scholar 

  22. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427. https://doi.org/10.1126/science.280.5362.425

    Article  CAS  Google Scholar 

  23. Toma FM, Cooper JK, Kunzelmann V, McDowell MT, Yu J, Larson DM, Borys NJ, Abelyan C, Beeman JW, Yu KM, Yang J, Chen L, Shaner MR, Spurgeon J, Houle FA, Persson KA, Sharp ID (2016) Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nat Commun 7:12012. https://doi.org/10.1038/ncomms12012

    Article  Google Scholar 

  24. Kim TW, Choi K-S (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. https://doi.org/10.1126/science.1246913

    Article  CAS  Google Scholar 

  25. Liu R, Zheng Z, Spurgeon J, Yang X (2014) Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ Sci 7(8):2504–2517. https://doi.org/10.1039/c4ee00450g

    Article  CAS  Google Scholar 

  26. Najafpour MM, Balaghi SE, Sadr MH, Soltani B, Sedigh DJ, Allakhverdiev SI (2017) Self-healing in nano-sized manganese-based water-oxidizing catalysts. In: Hou HJM, Najafpour MM, Moore GF, Allakhverdiev SI (eds) Photosynthesis: structures, mechanisms, and applications. Springer International Publishing, Cham, pp 333–341. https://doi.org/10.1007/978-3-319-48873-8_16

    Chapter  Google Scholar 

  27. Ambrosio F, Wiktor J, Pasquarello A (2018) pH-dependent catalytic reaction pathway for water splitting at the BiVO4–water interface from the band alignment. ACS Energy Lett 3(4):829–834. https://doi.org/10.1021/acsenergylett.8b00104

    Article  CAS  Google Scholar 

  28. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK (2016) Materials for solar fuels and chemicals. Nat Mater 16:70. https://doi.org/10.1038/nmat4778

    Article  CAS  Google Scholar 

  29. You B, Sun Y (2018) Innovative strategies for electrocatalytic water splitting. Acc Chem Res. https://doi.org/10.1021/acs.accounts.8b00002

    Article  CAS  Google Scholar 

  30. Nazemi M, Padgett J, Hatzell MC (2017) Acid/base multi-ion exchange membrane-based electrolysis system for water splitting. Energy Technol 5(8):1191–1194. https://doi.org/10.1002/ente.201600629

    Article  CAS  Google Scholar 

  31. Renaud R, LeRoy RL (1982) Separator materials for use in alkaline water electrolysers. Int J Hydrog Energy 7(2):155–166. https://doi.org/10.1016/0360-3199(82)90142-2

    Article  CAS  Google Scholar 

  32. Shamim S, Sudhakar K, Choudhary B, Anwar J (2015) A review on recent advances in proton exchange membrane fuel cells: materials, technology and applications. Adv Appl Sci Res 6(9):89–100

    CAS  Google Scholar 

  33. Mauritz KA, Moore RB (2004) State of understanding of nafion. Chem Rev 104(10):4535–4586. https://doi.org/10.1021/cr0207123

    Article  CAS  Google Scholar 

  34. Luo J, Vermaas AD, Bi D, Hagfeldt A, Smith WA, Gratzel M (2016) Bipolar membrane‐assisted solar water splitting in optimal pH. Adv Energy Mater 6(13):1600100. https://doi.org/10.1002/aenm.201600100

    Article  Google Scholar 

  35. Vermaas DA, Smith WA (2018) Applications of bipolar membranes for electrochemical and photoelectrochemical water splitting. In: Advances in photoelectrochemical water splitting, pp 208–238

    Google Scholar 

  36. Genovese JHK, Paster M, Turner J (2009) Current state-of-the art hydrogen production cost estimate using water electrolysis. NREL BK-6A1-46676

    Google Scholar 

  37. Rodriguez CA, Modestino MA, Psaltis D, Moser C (2014) Design and cost considerations for practical solar-hydrogen generators. Energy Environ Sci 7(12):3828–3835. https://doi.org/10.1039/c4ee01453g

    Article  CAS  Google Scholar 

  38. ARTIPHYCTION. EU-FP7 FCH JU founded project: No 303435. http://www.artiphyction.org

  39. Hernández S, Barbero G, Saracco G, Alexe-Ionescu AL (2015) Considerations on oxygen bubble formation and evolution on BiVO4 porous anodes used in water splitting photoelectrochemical cells. J Phys Chem C 119(18):9916–9925. https://doi.org/10.1021/acs.jpcc.5b01635

    Article  CAS  Google Scholar 

  40. Gliozzi AS, Hernández S, Alexe-Ionescu AL, Saracco G, Barbero G (2015) A model for electrode effects based on adsorption theory. Electrochim Acta 178:280–286. https://doi.org/10.1016/j.electacta.2015.07.043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carminna Ottone .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ottone, C., Hernández, S., Armandi, M., Bonelli, B. (2019). Scaling Up the Process of Photo-Electrochemical Water Splitting. In: Testing Novel Water Oxidation Catalysts for Solar Fuels Production. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12712-1_6

Download citation

Publish with us

Policies and ethics