Skip to main content

Part of the book series: PoliTO Springer Series ((PTSS))

  • 564 Accesses

Abstract

This chapter will cover the most important aspects concerning the water splitting reaction by providing an overall description of the main solutions, as reported in the literature, addressing the improvement of the efficiency of solar driven hydrogen production. The natural water splitting system will be considered as a starting point, in order to gain a better understanding of the main challenges that material scientists are facing towards the development of novel catalysts of water oxidation, mainly. The attention will focus on the water oxidation half-reaction, since it is the most complex and demanding process from both the kinetic and thermodynamic points of view. In addition, some general aspects of the photocatalytic water splitting and the principal semiconductors studied for such process will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardecka AJ et al (2018) High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD. Appl Catal B Environ 224(Supplement C):904–911

    Article  CAS  Google Scholar 

  2. Bensaid S et al (2012) Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. Chemsuschem 5(3):500–521

    Article  CAS  Google Scholar 

  3. Najafpour MM et al (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9(75):2383–2395

    Article  CAS  Google Scholar 

  4. Najafpour MM et al (2015) Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation. Biochim Biophys Acta (BBA)–Bioenerg 1847(2):294–306

    Article  CAS  Google Scholar 

  5. Chen C et al (2017) Natural and artificial Mn4Ca cluster for the water splitting reaction. Chemsuschem 10(22):4403–4408

    Article  CAS  Google Scholar 

  6. McCrory CCL et al (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137(13):4347–4357

    Article  CAS  Google Scholar 

  7. Hastings G (2015) Vibrational spectroscopy of photosystem I. Biochim Biophys Acta (BBA) Bioenerg 1847(1):55–68

    Article  CAS  Google Scholar 

  8. Giardi MT, Pace E, Photosynthetic proteins for technological applications. Trends Biotechnol 23(5):257–263

    Article  CAS  Google Scholar 

  9. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106(11):4455–4483

    Article  CAS  Google Scholar 

  10. Herrero C et al (2011) Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel. Energy Environ Sci 4(7):2353–2365

    Article  CAS  Google Scholar 

  11. Kirby JA et al (1981) State of manganese in the photosynthetic apparatus. 2. X-ray absorption edge studies on manganese in photosynthetic membrane. J Am Chem Soc 103(18):5537–5542

    Article  CAS  Google Scholar 

  12. Zouni A et al (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739

    Article  CAS  Google Scholar 

  13. Ferreira KN et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838

    Article  CAS  Google Scholar 

  14. Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134(17):7442–7449

    Article  CAS  Google Scholar 

  15. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11(6):457–475

    Article  CAS  Google Scholar 

  16. Umena Y et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55

    Article  CAS  Google Scholar 

  17. Suga M et al (2014) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99

    Article  Google Scholar 

  18. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075

    Article  CAS  Google Scholar 

  19. Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027

    Article  CAS  Google Scholar 

  20. Duan L et al (2011) Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy Environ Sci 4(9):3296–3313

    Article  CAS  Google Scholar 

  21. Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114

    Article  CAS  Google Scholar 

  22. Zhu G et al (2012) Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(µ-OH)(H2O)3}(Si2W19O70)]11. Dalton Trans 41(7):2084–2090

    Article  CAS  Google Scholar 

  23. Baktash E et al (2013) Cyanamide route to calcium-manganese oxide foams for water oxidation. Dalton Trans 42(48):16920–16929

    Article  CAS  Google Scholar 

  24. Mukhopadhyay S et al (2004) Manganese clusters with relevance to photosystem II. Chem Rev 104(9):3981–4026

    Article  CAS  Google Scholar 

  25. Domen K et al (1986) Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J Phys Chem 90(2):292–295

    Article  CAS  Google Scholar 

  26. Peter LM (2013) Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J Solid State Electrochem 17(2):315–326

    Article  CAS  Google Scholar 

  27. Peter LM, Wijayantha KU, Tahir AA (2012) Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss 155:309–322

    Article  CAS  Google Scholar 

  28. Busch M, Ahlberg E, Panas I (2013) Water oxidation on MnOx and IrOx: why similar performance? J Phys Chem C 117(1):288–292

    Article  CAS  Google Scholar 

  29. Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126(4):1290–1298

    Article  CAS  Google Scholar 

  30. Sivasankar N, Weare WW, Frei H (2011) Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J Am Chem Soc 133(33):12976–12979

    Article  CAS  Google Scholar 

  31. Blakemore JD et al (2010) Half-sandwich iridium complexes for homogeneous water-oxidation catalysis. J Am Chem Soc 132(45):16017–16029

    Article  CAS  Google Scholar 

  32. Surendranath Y, Nocera DG (2012) Oxygen evolution reaction chemistry of oxide-based electrodes. In: Karlin KD (ed) Progress in inorganic chemistry. Wiley, New Jersey

    Google Scholar 

  33. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  34. Parkinson B, Turner J (2013) The potential contribution of photoelectrochemistry in the global energy future. Photoelectrochem Water Split Mater Process Archit 9:1

    CAS  Google Scholar 

  35. Ni M et al (2007) A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    Article  CAS  Google Scholar 

  36. Yang X et al (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9(6):2331–2336

    Article  CAS  Google Scholar 

  37. Li Y et al (2011) A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energy 36(22):14374–14380

    Article  CAS  Google Scholar 

  38. Wang H, Turner JA (2010) Characterization of hematite thin films for photoelectrochemical water splitting in a dual photoelectrode device. J Electrochem Soc 157(11):F173–F178

    Article  CAS  Google Scholar 

  39. Su J et al (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11(5):1928–1933

    Article  CAS  Google Scholar 

  40. Qiu Y et al (2011) Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett 12(1):407–413

    Article  Google Scholar 

  41. Hsu C-H, Chen D-H (2011) Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting. Int J Hydrog Energy 36(24):15538–15547

    Article  CAS  Google Scholar 

  42. Sivula K, Formal FL, Grätzel M (2009) WO3 − Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21(13):2862–2867

    Article  CAS  Google Scholar 

  43. Ding C et al (2013) Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15(13):4589–4595

    Article  CAS  Google Scholar 

  44. Warren SC et al (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12(9):842–849

    Article  CAS  Google Scholar 

  45. Hernández S et al (2014) Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl Mater Interfaces 6(15):12153–12167

    Article  Google Scholar 

  46. Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648

    Article  CAS  Google Scholar 

  47. Swierk JR, Mallouk TE (2013) Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem Soc Rev 42(6):2357–2387

    Article  CAS  Google Scholar 

  48. Youngblood WJ et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131(3):926–927

    Article  CAS  Google Scholar 

  49. Ran J et al (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev

    Google Scholar 

  50. Maeda K et al (2009) Photocatalytic hydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheets sensitized by ruthenium(II) bipyridyl complexes. J Phys Chem C 113(18):7962–7969

    Article  CAS  Google Scholar 

  51. Youngblood WJ et al (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42(12):1966–1973

    Article  CAS  Google Scholar 

  52. Watanabe M (2017) Dye-sensitized photocatalyst for effective water splitting catalyst. Sci Technol Adv Mater 18(1):705–723

    Article  CAS  Google Scholar 

  53. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338

    Article  Google Scholar 

  54. Hernandez S et al (2017) Correction: core-substituted naphthalenediimides anchored on BiVO4 for visible light-driven water splitting. Green Chem 19(11):2695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carminna Ottone .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ottone, C., Hernández, S., Armandi, M., Bonelli, B. (2019). Introduction to the Water Splitting Reaction. In: Testing Novel Water Oxidation Catalysts for Solar Fuels Production. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12712-1_1

Download citation

Publish with us

Policies and ethics