Skip to main content

Biomimetic Membranes as an Emerging Water Filtration Technology

  • Chapter
  • First Online:
Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization

Abstract

Biomimetic membranes have high water permeability with high selectivity. Recent developments will increase their applications and variety in membrane technologies. This chapter focuses on the type and characteristics of water channels that can be used in these membranes. Also, strategies that can be used for fabrication of biomimetic membranes; lipid/polymer types and concentration that can be used in these membranes; and substrate types that are appropriate to use are summarized in details. The chapter is continued with applications of biomimetic membranes for the treatment of water and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Kocsis, Z. Sun, Y.M. Legrand, M. Barboiu, Artificial water channels—deconvolution of natural Aquaporins through synthetic design. npj Clean Water 1, 13 (2018)

    Article  Google Scholar 

  2. W.A. Philip, M. Elimelech, The future of seawater desalination: energy technology and the environment. Science 333, 712–717 (2011)

    Article  CAS  Google Scholar 

  3. W. Stillwell, Membrane transport, in An Introduction to Biological Membranes, ed. by W. Stillwell, (Elsevier, Amsterdam, 2016), pp. 423–451

    Google Scholar 

  4. J.R. Werber, M. Elimelech, Permselectivity limits of biomimetic desalination membranes. Sci. Adv. 4, eaar8266 (2018)

    Article  CAS  Google Scholar 

  5. J.T. Van Dongen, A.C. Borstlap, Aquaporins: Structure, Function and Phylogenetic Analysis (Elsevier/Academic Press, London, 2004)

    Google Scholar 

  6. D. Brown, The discovery of water channels (Aquaporins). Ann. Nutr. Metab. 70, 37–42 (2017)

    Article  Google Scholar 

  7. S. Scheuring, P. Ringler, M. Borgnia, H. Stahlberg, D.J. Mu, P. Agre, A. Engel, High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987 (1999)

    Article  CAS  Google Scholar 

  8. D.F. Savage, P.F. Egea, Y. Robles-colmenares, J.D.O.C. Ii, R.M. Stroud, Architecture and selectivity ° X-ray structure in aquaporins 2. 5: a of aquaporin Z. PLOS Biol. 1, e72 (2003)

    Article  Google Scholar 

  9. M.J. Borgnia, D. Kozono, G. Calamita, P.C. Maloney, P. Agre, G. Ambientale, Functional reconstitution and characterization of AqpZ, the E. . coli water channel protein. J. Mol. Biol. 291, 1169 (1999)

    Article  CAS  Google Scholar 

  10. G. Calamita, F. Generale, A. Studi, The Escherichia coli Aquaporin-Z water channel. Mol Microbiol. 37, 254–262 (2000)

    Article  CAS  Google Scholar 

  11. C. Zhao, H. Shao, L. Chu, Aquaporin structure – function relationships: water flow through plant living cells. Colloids Surf. B Biointerfaces 62, 163–172 (2008)

    Article  CAS  Google Scholar 

  12. G. Calamita, K.E. Rudd, M. Bonhivers, S. Kneip, W.R. Bishal, E. Bremer, P. Agre, The aquaporin-Z water channel gene of Escherichia coli: structure, organization and phylogeny. Biol. Cell, 321–329 (1995)

    Google Scholar 

  13. A. Abdelrasoul, H. Doan, A. Lohi, H. Doan, A. Lohi, Chapter 7: Recent development in Aquaporin (Aqp) membrane design recent development in aquaporin (Aqp) membrane design, in Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology, (Croatia InTech, Rijeka, 2017)

    Chapter  Google Scholar 

  14. J. Habel, M. Hansen, N. Larsen, G.V. Jensen, J. Bomholt, A. Ogbonna, K. Almdal, A. Schulz, Z. Wang, Aquaporin-based biomimetic polymeric membranes: approaches and challenges. Membranes 5, 307–351 (2015)

    Article  CAS  Google Scholar 

  15. M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. 104, 20719 (2007)

    Article  CAS  Google Scholar 

  16. W. Luo, M. Xie, X. Song, W. Guo, H.H. Ngo, J.L. Zhoud, L.D. Nghiem, Biomimetic aquaporin membranes for osmotic membrane bioreactors: membrane performance and contaminant removal. Bioresour. Technol. 249, 62–68 (2018)

    Article  CAS  Google Scholar 

  17. C. Y. Tang, Z. Wang, C. Hélix-Nielsen, Biomimetic Membranes for Water Purification and Wastewater Treatment. In Emerging Membrane Technology for Sustainable Water Treatment. Elsevier, Emerging Membrane Technology for Sustainable Water Treatment, pp. 359–369 (2016). DOI: 10.1016/B978-0-444-63312-5.00014-0

    Google Scholar 

  18. Y. Zhao, C.Q. Qiu, X.S. Li, A. Vararattanavech, W.M. Shen, J. Torres, C. Helix-Nielsen, R. Wang, X. Hu, A.G. Fane, C.Y. Tang, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci. 423, 422–428 (2012)

    Article  CAS  Google Scholar 

  19. G.P. Bienert, F. Chaumont, Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. BBA – Gen. Subj. 1840, 1596–1604 (2014)

    Article  CAS  Google Scholar 

  20. R. Sengur-Tasdemir, S. Aydin, T. Turken, E.A. Genceli, I. Koyuncu, Biomimetic approaches for membrane technologies. Sep. Purif. Rev. 45, 122–140 (2016)

    Article  CAS  Google Scholar 

  21. K. Ishibashi, Y. Tanaka, Y. Morishita, The role of mammalian superaquaporins inside the cell. Biochim. et Biophys. Acta (BBA)-Gen. Subj. 1840, 1507–1512 (2014)

    Article  CAS  Google Scholar 

  22. R. Mukhopadhyay, H. Bhattacharjee, B.P. Rosen, Aquaglyceroporins: generalized metalloid channels. BBA – Gen. Subj. 1840, 1583–1591 (2014)

    Article  CAS  Google Scholar 

  23. C.Y. Tang, Y. Zhao, R. Wang, C. Hélix-Nielsen, A.G. Fane, Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308, 34–40 (2013)

    Article  CAS  Google Scholar 

  24. A.E. I.O.N. Transport, Conserving, Ion transport across energy- conserving membrane

    Google Scholar 

  25. Y. Shen, P.O. Saboe, I.T. Sines, M. Erbakan, M. Kumar, Biomimetic membranes: a review. J. Membr. Sci. 454, 359–381 (2014)

    Article  CAS  Google Scholar 

  26. L. Rose, A.T.A. Jenkins, The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. J. Bioelec. Chem. 70, 387–393 (2007)

    CAS  Google Scholar 

  27. C.M. Halsey, D.A. Benham, R.D. Jiji, J.W. Cooley, Molecular and biomolecular spectroscopy influence of the lipid environment on valinomycin structure and cation complex formation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 200–206 (2012)

    Article  CAS  Google Scholar 

  28. T.M. Sanders, M. Myers, M. Asadnia, G.A. Umana-membreno, M. Baker, N. Fowkes, G. Parish, B. Nener, Description of ionophore-doped membranes with a blocked interface. Sens. Actuators B : Chem. 250, 499–508 (2017)

    Article  CAS  Google Scholar 

  29. N.C.f.B. Information., PubChem Compound Database; CID=5649, https://pubchem.ncbi.nlm.nih.gov/compound/5649. Accessed 09/30/2018

  30. S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, S.H. Bryant, PubChem substance and compound databases. Nucleic Acids Res. 4, 1202–1203 (2016)

    Article  CAS  Google Scholar 

  31. J.C. Freedman, Ionophores in Planar Lipid Bilayers, 4th edn. (Elsevier, 2012)

    Google Scholar 

  32. D.A. Kelkar, A. Chattopadhyay, The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 1768, 2011–2025 (2019)

    Article  CAS  Google Scholar 

  33. K. Boukari, G. Paris, T. Gharbi, S. Balme, J. Janot, F. Picaud, Confined nystatin polyenes in nanopore induce biologic ionic selectivity. J. Nanomater. 2016 (2016)

    Google Scholar 

  34. M. Barboiu, A. Gilles, From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46, 2814–2823 (2013)

    Article  CAS  Google Scholar 

  35. W. Song, C. Lang, Y.X. Shen, M. Kumar, Design considerations for artificial water channel–based membranes. Annu. Rev. Mater. Res. 48, 57 (2018)

    Article  CAS  Google Scholar 

  36. F. Nabeel, T. Rasheed, M. Bilal, C. Li, C. Yu, H.M.F. Iqbal, Bio-inspired supramolecular membranes: a pathway to separation and purification of emerging pollutants. Sep. Purif. Rev., 1 (2018)

    Google Scholar 

  37. T.F. De Greef, M.M. Smulders, M. Wolffs, A.P. Schenning, R.P. Sijbesma, E.W. Meijer, Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009)

    Article  CAS  Google Scholar 

  38. X.B. Hu, Z. Chen, G. Tang, J.L. Hou, Z.T. Li, Singlemolecular artificial transmembrane water channels. J. Am. Chem. Soc. 134, 8384–8387 (2012)

    Article  CAS  Google Scholar 

  39. Y.X. Shen, W. Si, M. Erbakan, K. Decker, R. De Zorzi, P.O. Saboe, Y.J. Kang, S. Majd, P.J. Butler, T. Walz, A. Aksimentiev, J.L. Houb, M. Kumar, Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. P. Natl. Acad. Sci. USA 112, 9810–9815 (2015)

    Article  CAS  Google Scholar 

  40. N. Sakai, Y. Kamikawa, M. Nishii, T. Matsuoka, T. Kato, S. Matile, Dendritic folate rosettes as ion channels in lipid bilayers. J. Am. Chem. Soc. 128, 2218–2219 (2006)

    Article  CAS  Google Scholar 

  41. C. Arnal-Hérault, A. Pasc, M. Michau, D. Cot, E. Petit, M. Barboiu, Functional G-quartet macroscopic membrane films. Angew. Chem. Int. Ed. 46, 8409–8413 (2007)

    Article  CAS  Google Scholar 

  42. Y. Le Duc, M. Michau, A. Gilles, V. Gence, Y.M. Legrand, A. Van Der Lee, M. Barboiu, Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50, 11366–11372 (2011)

    Article  CAS  Google Scholar 

  43. R. Hourani, C. Zhang, R. Van Der Weegen, L. Ruiz, C. Li, S. Keten, T. Xu, Processable cyclic peptide nanotubes with tunable interiors. J. Am. Chem. Soc. 133, 15296–15299 (2011)

    Article  CAS  Google Scholar 

  44. M.S. Kaucher, M. Peterca, A.E. Dulcey, A.J. Kim, S.A. Vinogradov, D.A. Hammer, P.A. Heiney, V. Percec, Selective transport of water mediated by porous dendritic dipeptides. J. Am. Chem. Soc. 129, 11698–11699 (2007)

    Article  CAS  Google Scholar 

  45. S. Schneider, E.D. Licsandru, I. Kocsis, A. Gilles, F. Dumitru, E. Moulin, M. Barboiu, Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. J. Am. Chem. Soc. 139, 3721–3727 (2017)

    Article  CAS  Google Scholar 

  46. R. Tunuguntla, A.Y. Hu, Y. Zhang, A. Noy, Impact of PEG additives and pore rim functionalization on water transport through sub-1-nm carbon nanotube porins. Faraday Discuss. 209, 359 (2018)

    Article  CAS  Google Scholar 

  47. Y.L. Ji, Q.F. An, Y.S. Guo, W.S. Hung, K.R. Lee, C.J. Gao, Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles. J. Mater. Chem. A 4, 4224–4231 (2016)

    Article  CAS  Google Scholar 

  48. V. Percec, A.E. Dulcey, V.S.K. Balagurusamy, Y. Miura, J. Smidrkal, M. Peterca, S. Nummelin, U. Edlund, S.D. Hudson, P.A. Heiney, D.A. Hu, S.N. Magonov, S.A. Vinogradov, Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430, 764–768 (2004)

    Article  CAS  Google Scholar 

  49. I. Kocsis, M. Sorci, H. Vanselous, S. Murail, S.E. Sanders, E. Licsandru, Y.M. Legrand, A. van der Lee, M. Baaden, P.B. Petersen, G. Belfort, M. Barboiu, Oriented chiral water wires in artificial transmembrane channels. Sci. Adv. 4, eaao5603 (2018)

    Article  CAS  Google Scholar 

  50. Z. Sun, I. Kocsis, Y. Li, Y.M. Legrand, M. Barboiu, Imidazole derivatives as artificial water channel building-blocks: structural design influence on water permeability. Faraday Discuss. 209, 113 (2018)

    Article  CAS  Google Scholar 

  51. H. Zhao, S. Sheng, Y. Hong, H. Zeng, Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules. J. Am. Chem. Soc. 136, 14270–14276 (2014)

    Article  CAS  Google Scholar 

  52. Y.X. Shen, W.C. Song, D.Y. Barden, T. Ren, C. Lang, H. Feroz, C.B. Henderson, P.O. Saboe, D. Tsai, H. Yan, P.J. Butler, G.C. Bazan, W.A. Phillip, R.J. Hickey, P.S. Cremer, H. Vashisth, M. Kumar, Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nat. Commun. 9, 2294 (2018)

    Article  CAS  Google Scholar 

  53. W.X. Feng, Z. Sun, M. Barboiu, Pillar[n]arenes for construction of artificial transmembrane channels. Isr. J. Chem. 58, 1–11 (2018)

    Article  CAS  Google Scholar 

  54. M. Vogele, J. Kofinger, G. Hummer, Molecular dynamics simulations of carbon nanotube porins in lipid bilayers. Faraday Discuss. 209, 341 (2018)

    Article  Google Scholar 

  55. Y. Zhang, R.H. Tunuguntla, P.O. Choi, A. Noy, Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 372, 20160226 (2017)

    Article  CAS  Google Scholar 

  56. M. Barboiu, Artificial water channels. Angew. Chem. Int. Ed. 51, 11674–11676 (2012)

    Article  CAS  Google Scholar 

  57. P.A. Pedersen, F.B. Bjørkskov, S. Alvisse, C. Helix-Nielsen, From channel proteins to industrial biomimetic membrane technology. Faraday Discuss. 209, 287 (2018)

    Article  CAS  Google Scholar 

  58. A. Giwa, S.W. Hasan, A. Yousuf, S. Chakraborty, D.J. Johnson, N. Hilal, Biomimetic membranes: a critical review of recent progress. Desalination 420, 403–424 (2017)

    Article  CAS  Google Scholar 

  59. G. Sun, H. Zhou, Y. Li, K. Jeyaseelan, A. Armugam, T.S. Chung, A novel method of AquaporinZ incorporation via binary lipid Langmuir Monolayers. Coll. Surf. B. 89, 283–288 (2012)

    Article  CAS  Google Scholar 

  60. P.H.H. Duong, T.S. Chung, K. Jeyaseelan, A. Armugam, Z. Chen, J. Yang, M. Hong, Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci. 409-410, 34–43 (2012)

    Article  CAS  Google Scholar 

  61. X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao, J. Torres, A.G. Fane, Preparation of supported lipid membranes for aquaporin Z incorporation. Coll. Surf. B. 94, 333–340 (2012)

    Article  CAS  Google Scholar 

  62. P.S. Zhong, T.S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci. 407-408, 27–33 (2012)

    Article  CAS  Google Scholar 

  63. H. Wang, T.S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, Z. Chen, M.M. Hong, W. Meier, Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small 8, 1185–1190 (2012)

    Article  CAS  Google Scholar 

  64. Y. Kaufman, S. Grinberg, C. Linder, E. Heldman, J. Gilron, Y.X. Shen, M. Kumar, R.G.H. Lammertink, V. Freger, Towards supported bolaamphiphile membranes for water filtration: roles of lipid and substrate. J. Membr. Sci. 457, 50–61 (2014)

    Article  CAS  Google Scholar 

  65. M. Wang, Z. Wang, X. Wang, S. Wang, W. Ding, C. Gao, Layer-by-layer assembly of aquaporin Z incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49, 3761–3768 (2015)

    Article  CAS  Google Scholar 

  66. W. Ding, J. Cai, Z. Yu, Q. Wang, Z. Xu, Z. Wang, C. Gao, Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support. J. Mater. Chem. A 3, 20118 (2015)

    Article  CAS  Google Scholar 

  67. W. Xie, F. He, B. Wang, T.S. Chung, K. Jeyaseelan, A. Armugam, Y.W. Tong, An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J. Mater. Chem. A 1, 7592 (2013)

    Article  CAS  Google Scholar 

  68. X. Li, R. Wang, F. Wicaksana, C. Tang, J. Torres, A.G. Fane, Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporinZ. J. Membr. Sci. 450, 181–188 (2014)

    Article  CAS  Google Scholar 

  69. P. Wagh, G. Parungao, R.E. Viola, I.C. Escobar, A new technique to fabricate high-performance biologically inspired membranes for water treatment. Sep. Purif. Technol. 156, 754–765 (2015)

    Article  CAS  Google Scholar 

  70. M. Grzelakowski, M.F. Cherenet, Y.X. Shen, M. Kumar, A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. J. Membr. Sci. 479, 223–231 (2015)

    Article  CAS  Google Scholar 

  71. H. Wang, T.S. Chung, Y.W. Tong, W. Meier, Z. Chen, M. Hong, K. Jeyaseelan, A. Armugam, Preparation and characterization of pore-suspending biomimetic membranes embedded with aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter 7, 7274 (2011)

    Article  CAS  Google Scholar 

  72. R. Sengur-Tasdemir, Biomimetic approaches for the fabrication of hollow fiber nanofiltration membranes, in Nanoscience & Nanoengineeering, (Istanbul Technical University, Istanbul, 2018), p. 234

    Google Scholar 

  73. D. Saeki, T. Yamashita, A. Fujii, H. Matsuyama, Reverse osmosis membranes based on a supported lipid bilayer with gramicidin a water channels. Desalination 375, 48–53 (2015)

    Article  CAS  Google Scholar 

  74. S. Guofei, Biomimetic membranes for desalination and water reuse, in Department of Chemical and Biomolecular Engineering, (National University of Singapore, Singapore, 2013)

    Google Scholar 

  75. G. Sun, T.S. Chung, K. Jeyaseelan, A. Armugam, Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids Surf. B: Biointerfaces 102, 466–471 (2013)

    Article  CAS  Google Scholar 

  76. Q. Saren, R. Wang, G. Chaitra, J. Torres, X. Hu, A.G. Fane, Aquaporin-based biomimetic reverse osmosis membranes: stability and long term performance. J. Membr. Sci. 508, 94–103 (2016)

    Article  CAS  Google Scholar 

  77. H.L. Wang, T.S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, H.H.P. Duong, F. Fu, H. Seah, J. Yang, M. Hong, Mechanically robust and highly permeable aquaporinZ biomimetic membranes. J. Membr. Sci. 434, 130–136 (2013)

    Article  CAS  Google Scholar 

  78. M.E. Palanco, N. Skovgaard, J. Søndergaard Hansen, K. Berg-Sørensen, C. Hélix-Nielsen, Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives. Bioinspir. Biomim. 13 (2017)

    Google Scholar 

  79. K. Kita-Tokarczyk, J. Grumelard, T. Haefele, W. Meier, Block copolymer vesicles – using concepts from polymer chemistry to mimic biomembranes. Polymer 46, 3540–3563 (2005)

    Article  CAS  Google Scholar 

  80. J. Kowal, X. Zhang, I.A. Dinu, C.G. Palivan, W. Meier, Planar biomimetic membranes based on amphiphilic block copolymers. ACS Macro Lett. 3, 59–63 (2014)

    Article  CAS  Google Scholar 

  81. R. Rodriguez-Garcia, M. Mell, I. Lopez-Montero, J. Netzel, T. Hellweg, F. Monroy, Polymersomes: smart vesicles of tunable rigidity and permeability. Soft Matter 7, 1532–1542 (2011)

    Article  CAS  Google Scholar 

  82. Z. Wang, X. Wang, M. Ding, M. Wang, X. Qi, C. Gao, Impact of monoolein on aquaporin1-based supported lipid bilayer membranes. Sci. Technol. Adv. Mater. 16, 45005 (2015)

    Article  CAS  Google Scholar 

  83. J.W.O. O’Connor, J.B. Klauda, Lipid membranes with a majority of cholesterol: applications to the ocular lens and aquaporin 0. J. Phys. Chem. B 115, 6544–6564 (2011)

    Article  CAS  Google Scholar 

  84. J. Tong, M.M. Briggs, D. Mlaver, A. Vidal, T.J. McIntosh, Sorting of lens aquaporins and connexins into raft and nonraft bilayers: Role of protein homo-oligomerization. Biophys. J. 97, 2493–3502 (2009)

    Article  CAS  Google Scholar 

  85. Y. Zhao, A. Vararattanavech, X. Li, C. Hélix Nielsen, T. Vissing, J. Torres, Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes. Environ. Sci. Technol. 47, 1496–1503 (2013)

    CAS  Google Scholar 

  86. T. Ren, M. Erbakan, Y.X. Shen, E. Barbieri, P.O. Saboe, H. Feroz, H. Yan, S. McCuskey, J.F. Hall, A.B. Schantz, G.C. Bazan, P.J. Butler, M. Grzelakowski, M. Kumar, Membrane protein insertion into and compatibility with biomimetic membranes. Adv.. Biosystems. 1, 1700053 (2017)

    Article  CAS  Google Scholar 

  87. J. Vogel, M. Perry, J.S. Hansen, P.Y. Bolinger, C. Helix Nielsen, O. Geschke, A support structure for biomimetic applications. J. Micromech. Microeng. 19, 025026 (2009)

    Article  CAS  Google Scholar 

  88. Y. Kaufman, S. Grinberg, C. Linder, E. Heldman, J.L. Gilron, V. Freger, Fusion of bolaamphiphile micelles: a method to prepare stable supported biomimetic membranes. Langmuir 29, 1152 (2013)

    Article  CAS  Google Scholar 

  89. X. Li, S. Chou, R. Wang, L. Shi, W. Fang, G. Chaitra, C.Y. Tang, J. Torres, X. Hu, A.G. Fane, Nature gives the best solution for desalination: aquaporin-based hollow fiber composite membrane with superior performance. J. Membr. Sci. 434, 130–136 (2015)

    Article  CAS  Google Scholar 

  90. X. Li, C.H. Loh, R. Wang, W. Widjajanti, J. Torres, Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. J. Membr. Sci. 525, 257–268 (2017)

    Article  CAS  Google Scholar 

  91. G. Sun, T.S. Chung, K. Jeyaseelan, A. Armugam, A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Adv. 3, 473–481 (2013)

    Article  CAS  Google Scholar 

  92. S. Wang, J. Cai, W. Ding, Z. Xu, Z. Wang, Bio-inspired aquaporinz containing double-skinned forward osmosis membrane synthesized through layer-by-layer assembly. Membranes 5, 369–384 (2015)

    Article  CAS  Google Scholar 

  93. A. Granéli, J. Rydström, B. Kasemo, F. Höök, Formation of supported lipid bilayer membranes on SiO2 from proteoliposomes containing transmembrane proteins. Langmuir 19, 842–850 (2003)

    Article  CAS  Google Scholar 

  94. X. Li, R. Wang, F. Wicaksana, Y. Zhao, C. Tang, J. Torres, A.G. Fane, Fusion behaviour of aquaporin Z incorporated proteoliposomes investigated by quartz crystal microbalance with dissipation (QCM-D). Colloids Surf. B: Biointerfaces 111, 446–452 (2013)

    Article  CAS  Google Scholar 

  95. R. Richter, A. Mukhopadhyay, A. Brisson, Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 85, 3035–3047 (2003)

    Article  CAS  Google Scholar 

  96. Z. Wang, H. Shao, J. Ye, L. Tang, P. Lu, Dibenzosuberenylidene-ended fluorophores: rapid and efficient synthesis, characterization, and aggregation-induced emissions. J. Phys. Chem. B 109, 19627–19633 (2005)

    Article  CAS  Google Scholar 

  97. E. Reimhult, C. Larsson, B. Kasemo, F. Höök, Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal. Chem. 76, 7211–7220 (2004)

    Article  CAS  Google Scholar 

  98. E. Reimhult, M. Zäch, F. Höök, B. Kasemo, A multitechnique study of liposome adsorption on au and lipid bilayer formation on SiO2. Langmuir 22, 3313–3319 (2006)

    Article  CAS  Google Scholar 

  99. N. Kohli, S. Vaidya, R.Y. Ofoli, R.M. Worden, I. Lee, Arrays of lipid bilayers and liposomes on patterned polyelectrolyte templates. J. Colloid Interface Sci. 301, 461 (2006)

    Article  CAS  Google Scholar 

  100. Y.X. Shen, M. Kumar, Artificial water channels: bioinspired and energy-efficient filtration materials, in: AIChE Annual Meet., (Minneapolis, MN, 2017)

    Google Scholar 

  101. W. Song, Y.X. Shen, C. Lang, P. Saha, I.V. Zenyuk, R.J. Hickeye, M. Kumar, Unique selectivity trends of highly permeable PAP[5] water channel membranes. Faraday Discuss. 209, 193 (2018)

    Article  CAS  Google Scholar 

  102. G. Sun, T.S. Chung, N. Chen, X. Lu, Q. Zhao, Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Adv. 3, 9178 (2013)

    Article  CAS  Google Scholar 

  103. C.S. Lee, M.K. Choi, Y.Y. Hwang, H. Kim, M.K. Kim, Y.J. Lee, Facilitated water transport through graphene oxide membranes functionalized with aquaporin-mimicking peptides. Adv. Mater. 30, 1705944 (2018)

    Article  CAS  Google Scholar 

  104. C. Schneider, S. Rajmohan, A. Zarebska, P. Tsapekos, C. Hélix-Nielsen, Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. Sci. Total Environ. 647, 1021–1030 (2019)

    Article  CAS  Google Scholar 

  105. N. Singh, I. Petrinic, C. Helix-Nielsen, S. Basu, M. Balakrishnan, Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Res. 130, 271–280 (2018)

    Article  CAS  Google Scholar 

  106. L.L. Xia, M.F. Andersen, C. Helix-Nielsen, J.R. McCutcheon, Novel commercial aquaporin flat-sheet membrane for forward osmosis. Ind. Eng. Chem. Res. 56, 11919–11925 (2017)

    Article  CAS  Google Scholar 

  107. M.S. Camilleri Rumbau, L.C. Vargas, A. Romagnoli, K. Trzaskus, E. Gad, C. Hélix-Nielsen, Concentration of downstream effluents from pharmaceutical industry using aquaporin InsideTM hollow fiber forward osmosis membranes – influence of flow conditions on membrane performance., in: 11th International Congress on Membranes and Membrane Processes (ICOM 2017), San Francisco, CA, 2017

    Google Scholar 

  108. N. Bajraktari, H.T. Madsen, M.F. Gruber, S. Truelsen, E.L. Jensen, H. Jensen, C. Helix-Nielsen, Separation of peptides with forward osmosis biomimetic membranes. Membranes (Basel) 6, 1–12 (2016)

    Google Scholar 

  109. W. Ye, J. Lin, H.T. Madsen, E.G. Søgaard, C. Hélix-Nielsen, P. Luis, B. Van der Bruggen, Enhanced performance of a biomimetic membrane for Na2CO3 crystallization in the scenario of CO2 capture. J. Membr. Sci. 498, 75–85 (2016)

    Article  CAS  Google Scholar 

  110. H.T. Madsen, N. Bajraktari, C. Hélix-Nielsen, B. Van der Bruggen, E.G. Søgaard, Use of biomimetic forward osmosis membrane for trace organics removal. J. Membr. Sci. 476, 469–474 (2015)

    Article  CAS  Google Scholar 

  111. A. Zarebska, I. Petrinic, T. Hey, C. Hélix-Nielsen, J.L.C. Jansen, Fouling characterization of forward osmosis biomimetic aquaporin membranes used for water recovery from municipal wastewater, in: International Conference on Emerging Water Desalination Technologies in Municipal and Industrial Applications, (San Diego, USA, 2015)

    Google Scholar 

  112. S.M.D. Iskander, J.T. Novak, Z. He, Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell. Bioresour. Technol. 255, 76–82 (2018)

    Article  CAS  Google Scholar 

  113. W. Luo, B. Arhatari, S.R. Gray, M. Xie, Seeing is believing: insights from synchrotron infrared mapping for membrane fouling in osmotic membrane bioreactors. Water Res. 137, 355–361 (2018)

    Article  CAS  Google Scholar 

  114. Y. Yang, X. Yang, Z. He, Bioelectrochemically-assisted mitigation of salinity buildup and recovery of reverse-fluxed draw solute in an osmotic membrane bioreactor. Water Res. 141, 259–267 (2018)

    Article  CAS  Google Scholar 

  115. F.M. Munshi, J. Church, R. McLean, N. Maier, A.H.M.A. Sadmani, S.J. Duranceau, W.H. Lee, Dewatering algae using an aquaporin-based polyethersulfone forward osmosis membrane. Sep. Purif. Technol. 204, 154–161 (2018)

    Article  CAS  Google Scholar 

  116. S. Engelhardt, A. Sadek, S. Duirk, Rejection of trace organic water contaminants by an aquaporin-based biomimetic hollow fiber membrane. Sep. Purif. Technol. 197, 170–177 (2018)

    Article  CAS  Google Scholar 

  117. Y. Chun, L. Qing, G. Sun, M.R. Bilad, A.G. Fane, T.H. Chon, Prototype aquaporin-based forward osmosis membrane: filtration properties and fouling resistance. Desalination 445, 75–84 (2018)

    Article  CAS  Google Scholar 

  118. J. Ren, J.R. McCutcheon, A new commercial biomimetic hollow fiber membrane for forward osmosis. Desalination 442, 44–50 (2018)

    Article  CAS  Google Scholar 

  119. J.L. Soler-Cabezas, J.A. Mendoza-Roca, M.C. Vincent-Vela, M.J. Luján-Facundo, L. Pastor-Alcañiz, Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis. Sep. Purif. Technol. 193, 289–296 (2017)

    Article  CAS  Google Scholar 

  120. S. Zou, M. Qin, Y. Moreau, Z. He, Nutrient-energy-water recovery from synthetic sidestream centrate using a microbial electrolysis cell – forward osmosis hybrid system. J. Clean. Prod. 154, 16–25 (2017)

    Article  CAS  Google Scholar 

  121. J. Xu, T.N. Tran, H. Lin, N. Dai, Removal of disinfection byproducts in forward osmosis for wastewater recycling. J. Membr. Sci. 564, 352–360 (2018)

    Article  CAS  Google Scholar 

  122. S. Kalafatakis, S. Braekevelt, A. Lymperatou, A. Zarebska, C. Helix-Nielsen, L. Lange, I.V. Skiadas, H.N. Gavala, Application of forward osmosis technology in crude glycerol fermentation biorefinery-potential and challenges. Bioprocess Biosyst. Eng. 41, 1089–1101 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to TUBITAK (The Scientific and Technological Research Council of Turkey) for the financial support under grant (Project No: 113Y359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Koyuncu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengur-Tasdemir, R., Tutuncu, H.E., Gul-Karaguler, N., Ates-Genceli, E., Koyuncu, I. (2019). Biomimetic Membranes as an Emerging Water Filtration Technology. In: Kök, F., Arslan Yildiz, A., Inci, F. (eds) Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-030-11596-8_11

Download citation

Publish with us

Policies and ethics