Skip to main content

Quantum Reference Frames Associated with Noncompact Groups

  • Chapter
  • First Online:
Detectors, Reference Frames, and Time

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Both quantum communication without a shared reference frame and the construction of a relational quantum theory require the notion of a quantum reference frame. Aspects of quantum reference frames associated with noncompact groups, specifically, the translation group and the group of Galilean boosts are analyzed. It is demonstrated that the usually employed group average, used to dispense of the notion of an external reference frame, leads to unphysical states when applied to reference frames associated with noncompact groups. However, it is shown that this average does lead naturally to a reduced state on the relative degrees of freedom of a system, which was previously considered by Angelo et al. (J Phys A 44:145304, 2011). The informational properties of this reduced state for systems of two and three particles in Gaussian states are characterized in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is not quite true. Background structure such as topology, spacetime dimension, and metric signature still exist, and may or may not be subject to quantization. See [33] for further discussion.

References

  1. G. Adesso, F. Illuminati, Entanglement in continuous variable systems: recent advances and current perspectives. J. Phys. A 40, 7821 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Adesso, A. Serafini, F. Illuminati, Quantification and scaling of multipartite entanglement in continuous variable systems. Phys. Rev. Lett. 93, 220504 (2004)

    Article  ADS  Google Scholar 

  3. G. Adesso, S. Ragy, A.R. Lee, Continuous variable quantum information: Gaussian states and beyond. Open Syst. Inf. Dyn. 21, 1440001 (2014)

    Article  MathSciNet  Google Scholar 

  4. P. Aguilar, C. Chryssomalakos, H.H. Coronado, E. Okon, Position operators and center of mass: new perspectives. Int. J. Mod. Phys. A 28, 1350146 (2013)

    Article  ADS  Google Scholar 

  5. Y. Aharonov, G. Carmi, Quantum aspects of the equivalence principle. Found. Phys. 3, 493 (1973)

    Article  ADS  Google Scholar 

  6. Y. Aharonov, T. Kaufherr, Quantum frames of reference. Phys. Rev. D 30, 368 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. Aharonov, L. Susskind, Charge superselection rule. Phys. Rev. 155, 1428 (1967)

    Article  ADS  Google Scholar 

  8. Y. Aharonov, L. Susskind, Observability of the sign change of spinors. Phys. Rev. 158, 1428 (1967)

    Article  ADS  Google Scholar 

  9. M. Ahmadi, A.R.H. Smith, A. Dragan, Communication between inertial observers with partially correlated reference frames. Phys. Rev. A 92, 062319 (2015)

    Article  ADS  Google Scholar 

  10. R.M. Angelo, A.D. Ribeiro, Kinematics and dynamics in noninertial quantum frames of reference. J. Phys. A 45, 465306 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.M. Angelo, N. Brunner, S. Popescu, A.J. Short, P. Skrzypczyk, Physics within a quantum reference frame. J. Phys. A 44, 145304 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. S.D. Bartlett, T. Rudolph, R.W. Spekkens, Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.D. Bartlett, T. Rudolph, R.W. Spekkens, P.S. Turner, Quantum communication using a bounded-size quantum reference frame. New J. Phys. 11, 063013 (2009)

    Article  ADS  Google Scholar 

  14. A. Chȩcińska, A. Dragan, Communication between general-relativistic observers without a shared reference frame. Phys. Rev. A 92, 012321 (2015)

    Google Scholar 

  15. M.R. Dowling, S.D. Bartlett, T. Rudolph, R.W. Spekkens, Observing a coherent superposition of an atom and a molecule. Phys. Rev. A 74, 052113 (2006)

    Article  ADS  Google Scholar 

  16. D. Giulini, States, symmetries and superselection, in Decoherence: Theoretical, Experimental, and Conceptual Problems, ed. by P. Blanchard, E. Joos, D. Giulini, C. Kiefer, I.-O. Stamatescu (Springer, Berlin, 2000), pp. 87–100

    Chapter  Google Scholar 

  17. M. Jarzyna, R. Demkowicz-Dobrzański, Quantum interferometry with and without an external phase reference. Phys. Rev. A 85, 011801 (2012)

    Article  ADS  Google Scholar 

  18. O. Kabernik, Quantum Reference Frames and the Poincaré Symmetry, Master’s thesis, University of Waterloo, 2014

    Google Scholar 

  19. A. Kitaev, D. Mayers, J. Preskill, Superselection rules and quantum protocols. Phys. Rev. A 69, 052326 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Lubkin, On violation of the superselection rules. Ann. Phys. 56, 69 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  22. I. Marvian, R.B. Mann, Building all time evolutions with rotationally invariant Hamiltonians. Phys. Rev. A 78, 022304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Marvian, R.W. Spekkens, The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)

    Article  ADS  Google Scholar 

  24. R. Mirman, Coherent superposition of charge states. Phys. Rev. 186, 1380 (1969)

    Article  ADS  Google Scholar 

  25. R. Mirman, Analysis of the experimental meaning of coherent superposition and the nonexistence of superselection rules. Phys. Rev. D 1, 3349 (1970)

    Article  ADS  Google Scholar 

  26. M.C. Palmer, F. Girelli, S.D. Bartlett, Changing quantum reference frames. Phys. Rev. A 89, 052121 (2014)

    Article  ADS  Google Scholar 

  27. D. Poulin, Toy model for a relational formulation of quantum theory. Int. J. Theor. Phys. 45, 1189 (2006)

    Article  MathSciNet  Google Scholar 

  28. C. Rovelli, Quantum reference systems. Classical Quantum Gravity 8, 317 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Rovelli, What is observable in classical and quantum gravity? Classical Quantum Gravity 8, 297 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996)

    Article  MathSciNet  Google Scholar 

  31. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  32. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  33. L. Smolin, The structural foundations of quantum gravity, in The Case for Background Independence (Oxford University Press, Oxford, 2006), pp. 196–239

    Book  Google Scholar 

  34. G. Vidal, R.F. Werner, A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  35. C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  36. J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58, 141 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, A.R.H. (2019). Quantum Reference Frames Associated with Noncompact Groups. In: Detectors, Reference Frames, and Time. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-11000-0_6

Download citation

Publish with us

Policies and ethics