Skip to main content

Use of Ion-Exchange Resins in Alkylation Reactions

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in Chemical and Food Industries

Abstract

Important organic reactions require the use of catalysts in order to be industrially or academically applicable. Heterogeneous catalysts, in this context, show significant advantages over conventional homogeneous catalysts, especially with regard to separation of products from the reaction medium, recycling, and reuse. Ion-exchange resins are solid acid heterogeneous catalysts that play a key role in many useful reactions such as alkylation, esterification, etherification of olefins with alcohols, dehydration of alcohols to olefins or ethers, olefin hydration, and ester hydrolysis. Alkylation is the transfer of an alkyl group from one molecule to another, and is one of the most important catalytic processes of the chemical industries since it is widely applied in different areas such as fuels, cleaning products, and pharmacological products. This chapter presents a review of the use of ion-exchange resins in alkylation reactions on different substrates, highlighting the particularities of each case. First, definitions and classical industrial processes are discussed followed by an illustration of alkylation reactions in terms of mechanism, activity, and selectivity. Finally, the use of biomass derivatives in catalyzed alkylation reactions with ion-exchange resins is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olah GA (1963) Friedel-Crafts and related reactions. Wiley-Interscience, New York

    Google Scholar 

  2. Tanabe K, Holderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal A 181:399–434

    Article  CAS  Google Scholar 

  3. Perego C, Ingallina P (2002) Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 73:3–22

    Article  CAS  Google Scholar 

  4. Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107:5366–5410

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Meng X, Zhao G, Zhang S (2017) Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production. Green Chem 19:1462–1489

    Article  CAS  Google Scholar 

  6. Wang JJ, Chuang YY, Hsu HY, Tsai TC (2017) Toward industrial catalysis of zeolite for linear alkylbenzene synthesis: a mini review. Catal Today 298:109–116

    Article  CAS  Google Scholar 

  7. Singhal S, Agarwal S, Arora S, Singhal N, Kumar A (2017) Solid acids: potential catalysts for alkene-isoalkane alkylation. Catal Sci Technol 7:5810–5819

    Article  CAS  Google Scholar 

  8. Dolganova I, Ivanchina E, Ivashkina E (2018) Alkylaromatics in detergents manufacture: modeling and optimizing linear alkylbenzene sulfonation. Surfct Deterg 21:175–184

    Article  CAS  Google Scholar 

  9. Weissemel K, Arpe HJ (1997) Industrial organic chemistry, 3rd edn. VCH, Weinheim, p 358

    Book  Google Scholar 

  10. Pal R, Sarkar T, Khasnobis S (2012) Amberlyst-15 in organic synthesis. Arkivoc 1:570–609

    Google Scholar 

  11. Dasgupta S, Török B (2008) Environmentally benign contemporary Friedel-Crafts chemistry by solid acids. Curr Org Synth 5:21–342

    Article  Google Scholar 

  12. Zhang X, Zhao Y, Xu S, Yang Y, Liu J, Wei Y, Yang Q (2014) Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace. Nat Commun 5:3170

    Article  PubMed  CAS  Google Scholar 

  13. Li H, Riisager A, Sravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R (2018) Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal 8:148–187

    Article  CAS  Google Scholar 

  14. Alfs H, Steiner H, Grunheit KH (1979) Bohm, G. Process for continuous alkylation of phenol using ion exchange resins. USA 4,168,390

    Google Scholar 

  15. Li L, Zhang J, Du C, Luo G (2018) Process intensification of sulfuric acid alkylation using a microstructured chemical system. Ind Eng Chem Res 57:3523–3529

    Article  CAS  Google Scholar 

  16. Li Y, Liu R, Zhao G, Zhou Z, Zhang J, Shi C, Liu X, Zhang X, Zhang S (2018) Simulation and optimization of fixed bed solid acid catalyzed isobutane/2-butene alkylation process. Fuel 216:686–696

    Article  CAS  Google Scholar 

  17. Sharma MM (1995) Some novel aspects of cationic ion-exchange resins as catalysts. React Funct Polym 26:3–23

    Article  CAS  Google Scholar 

  18. Harmer MA, Sun Q (2001) Solid acids catalysis using ion exchange resins. Appl Catal A Gen 221:45–62

    Article  CAS  Google Scholar 

  19. Zhang X, Deng Q, Han P, Xu J, Pan L, Wang L, Zou JJ (2017) Hydrophobic mesoporous acidic resin for hydroxyalkylation/alkylation of 2-methylfuran and ketone to high-density biofuel. AIChE J 63:680–688

    Article  CAS  Google Scholar 

  20. Gelbard G (2005) Organic synthesis by catalysis with ion-exchange resins. Ind Eng Chem Res 44:8468–8498

    Article  CAS  Google Scholar 

  21. Zhang X, Yaopeng ZY, Yang Q (2014) PS-SO3H@phenylenesilica with yolk–double-shell nanostructures as efficient and stable solid acid catalysts. J Catal 320:180–188

    Article  CAS  Google Scholar 

  22. Teixeira VT, Coutinho FMB (2010) Morphological study on the reactivity of styrene-divinylbenzene copolymers in a chloromethylation reaction. J Appl Polym Sci 118:2389–2396

    CAS  Google Scholar 

  23. Kunin R, Meitzner E, Bortnick N (1962) Macroreticular ion exchange resins. J Chem Soc 84:305–306

    Article  CAS  Google Scholar 

  24. Millar JR, Smith DG, Marr WE, Kressman TRE (1963) Solvent modified polymer networks. Part I. The preparation and characterisation of expanded-network and macroporous styrene-divinylbenzene copolymers and their sulphonates. J Chem Soc: 218–225

    Article  CAS  Google Scholar 

  25. Kun KA, Kunin R (1964) Pore structure of some macroreticular ion exchange resin. Polym Lett 12:587–591

    Article  Google Scholar 

  26. Sederel WL, de Jong GJ (1973) Styrene-divinylbenzene copolymers. Construction of porosity in styrene divinylbenzene matrices. J Appl Polym Sci 17:2835–2846

    Article  CAS  Google Scholar 

  27. Poinescu IC, Beldie C, Vlad C (1984) Styrene divinylbenzene copolymers: influence of the diluent on network porosity. J Appl Polym Sci 29:23–34

    Article  CAS  Google Scholar 

  28. Okay O, Balkas TI (1986) Heterogeneous styrene-divinylbenzene copolymers in collapsed and reexpanded states. J Appl Polym Sci 31:1785–1795

    Article  CAS  Google Scholar 

  29. Rabelo D, Coutinho FMB (1994) Structure and properties of styrene-divinylbenzene copolymers I. Pure solvents as pore forming agents. Polym Bull 33:479–486

    Article  CAS  Google Scholar 

  30. Okay O (1999) Phase separation in free-radical crosslinking copolymerization: formation of heterogeneous polymer networks. Polymer 40:4117–4129

    Article  CAS  Google Scholar 

  31. Barton AF (1991) Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton

    Google Scholar 

  32. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  33. Millar JR, Smith DG, Kressman TRE (1965) Solvent modified polymer networks. Part IV. Styrene-divinylbenzene copolymers made in the presence of non-sovating diluents. J Chem Soc: 304–310

    Google Scholar 

  34. Howard GJ, Midgley CA (1981) The formation and structure of suspension polymerized styrene-divinylbenzene copolymers. J Appl Polym Sci 26:3845–3870

    Article  CAS  Google Scholar 

  35. Wieczorek PP, Kolarz BN, Galena H (1984) Porous structure of highly crosslinked styrene-divinylbenzene copolymers. Angew Makromol Chem 126:39–50

    Article  CAS  Google Scholar 

  36. Costa LC, Gomes AS, Coutinho FMB, Teixeira VG (2010) Chelating resins for mercury extraction based on grafting of polyacrylamide chains onto styrene-divinylbenzene copolymers by gamma irradiation. React Funct Polym 70:738–746

    Article  CAS  Google Scholar 

  37. Aguiar LG, Moura JOV, Neto TGS, Lopes VMP, Dias JR (2017) Prediction of resin textural properties by vinyl/divinyl copolymerization modeling. Polymer 129:21–31

    Article  CAS  Google Scholar 

  38. Ahmad A, Siddique JA, Laskar MA, Kumar R, Mohd-Setapar SH, Khatoon A, Shiekh RA (2015) New generation Amberlite XAD resin for the removal of metal ions: a review. J Environ Sci 31:104–123

    Article  CAS  Google Scholar 

  39. Antunes BM, Rodrigues AE, Lin Z, Portugal I, Silva CM (2015) Alkenes oligomerization with resin catalysts. Fuel Process Technol 138:86–99

    Article  CAS  Google Scholar 

  40. Chakrabarti A, Sharma MM (1993) Cationic ion exchange resins as catalyst. Reac Polym 20:1–45

    Article  CAS  Google Scholar 

  41. Jerabek K, Hanková L, Holub L (2010) Working-state morphologies of ion exchange catalysts and their influence on reaction kinetics. J Mol Catal A Chem 333:109–113

    Article  CAS  Google Scholar 

  42. Buttersack C, Widdecke H, Klein J (1986) The concept of variable active centers in acid catalysis. PART I alkylation of benzene with olefins catalyzed by ion exchange resins. J Mol Catal 38:365–381

    Article  CAS  Google Scholar 

  43. Molnár A (2011) Nafion-silica nanocomposites: a new generation of water-tolerant solid acids of high efficiency-an update. Curr Org Chem 15:3928–3960

    Article  Google Scholar 

  44. Thomas JM, Thomas WJ (2015) Principles and practice of heterogeneous catalysis, 2nd edn. Wiley, KGaA

    Google Scholar 

  45. Luyben WL (2007) Chemical reactor design and control. Wiley, London

    Book  Google Scholar 

  46. Unnikrishnan P, Srinivas D (2016) Heterogeneous catalysis. In: Industrial catalytic processes for fine and specialty chemicals. Elsevier, Joshi SS, Ranade VV (eds) CSIR-national chemical laboratory, Pune, India

    Google Scholar 

  47. Radcliffe WH, Kiel WL, Gosling SD, Sechrist PA, Anderson P (2004) Apparatus for alkylation using solid catalyst particles in a transport reactor USA 6,814,943 B2

    Google Scholar 

  48. Kaufman S, Brunswick E, Nicol RE (1969) Process for continuous alkylation of aryl hydroxides using ion- exchange resins. USA 3,422,157

    Google Scholar 

  49. Skripek M (1966) Process for alkylating aromatic hydrocarbons using a sulfonated resin catalyst. USA 3,238,266

    Google Scholar 

  50. Pines H (1981) The Chemistry of catalytic hydrocarbon conversions. Academic Press, New York

    Google Scholar 

  51. Olah GA, Prakash GKS, Sommer J (1985) Superacids. Wiley, New York

    Google Scholar 

  52. Corma A, Martinez A (1993) Chemistry, catalysts, and processes for isoparaffin-olefin alkylation: actual situation and future trends. Catal Rev-Sci Eng 35:483–570

    Article  CAS  Google Scholar 

  53. Olah GA, Btamack P, Deffieux D, Török B, Wang Q, Molnár A, Prakash GKS (1996) Acidity dependence of the trifluoromethanesulfonic acid catalyzed isobutane-isobutylene alkylation modified with trifluoroacetic acid or water. Appl Catal A 146:107–117

    Article  CAS  Google Scholar 

  54. Feller A, Zuazo I, Guzman A, Barth JO, Lercher AJ (2003) Common mechanistic aspects of liquid and solid acid catalyzed alkylation of isobutane with n-butene. J Catal 216:313–323

    Article  CAS  Google Scholar 

  55. Esteves PM, Araujo CL, Horta BAC, Alvarez LJ, Wilson-Zicovich CM, Solis-Ramirez A (2005) The isobutylene-isobutane alkylation process in liquid HF revisited. J Phys Chem B 109:12946–12955

    Article  CAS  PubMed  Google Scholar 

  56. Albright LF (2009) Present and future alkylation processes in refineries. Ind Eng Chem Res 48:1409–1413

    Article  CAS  Google Scholar 

  57. Hidalgo JM, Zbuzek M, Cerný R, Jísa P (2014) Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality. Cent Eur J Chem 12:1–13

    Article  CAS  Google Scholar 

  58. Shen W, Dube D, Kaliaguine S (2008) Alkylation of isobutane/1-butene over periodic mesoporous organosilica functionalized with perfluoroalkylsulfonic acid group. Catal Commun 10:291–294

    Article  CAS  Google Scholar 

  59. Shen W, Gu Y, Xu H, Dubé D, Kaliaguine S (2010) Alkylation of isobutane/1-butene on methyl-modified nafion/SBA-15 materials. Appl Catal A 377:1–8

    Article  CAS  Google Scholar 

  60. Shen W, Gu Y, Xu H, Che R, Dubé D, Kaliaguine S (2010) Alkylation of isobutane/1-butene on methyl-modified nafion/SBA-16 materials. Ind Eng Chem Res 49:7201–7209

    Article  CAS  Google Scholar 

  61. Gobin OC, Huang Q, Vinh-Thang H, Kleitz F, Eic M, Kaliaguine S (2007) Mesostructured silica SBA-16 with tailored intrawall porosity part 2: diffusion. J Phys Chem C 111:3059–3065

    Article  CAS  Google Scholar 

  62. Botella P, Corma A, Lopez-Nieto JM (1999) The influence of textural and compositional characteristics of nafion/silica composites on isobutane/2-butene alkylation. J Catal 185:371–377

    Article  CAS  Google Scholar 

  63. Lyon CJ, Sarsani VSR, Subramaniam B (2004) 1-butene + isobutane reactions on solid acid catalysts in dense CO2-based reaction media: experiments and modeling. Ind Eng Chem Res 43:4809–4814

    Article  CAS  Google Scholar 

  64. Harmer MA, Farneth WE, Sun Q (1998) Towards the sulfuric acid of solids. Adv Mater 10:1255–1257

    Article  CAS  Google Scholar 

  65. Heidekum A, Harmer MA, Holderich WF (1998) Highly selective fries rearrangement over zeolites and Nafion in silica composite catalysts: a comparison. J Catal 176:260–263

    Article  CAS  Google Scholar 

  66. Kumar P, Vermeiren W, Dath JP, Hoelderich WF (2006) Alkylation of raffinate II and isobutane on Nafion silica nanocomposite for the production of isooctane. Energy Fuels 20:481–487

    Article  CAS  Google Scholar 

  67. Alvaro M, Corma A, Das D, Fornés V, Gracia H (2004) Single step, preparation and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups analogous to Nafion. Chem Commun: 956–957

    Google Scholar 

  68. Macquarrie DJ, Tavener SJ Harmer MA (2005) Novel mesoporous silica-perfluorosulfonic acid hybrids as strong heterogeneous bronsted catalysts. Chem Commun: 2363–2365

    Google Scholar 

  69. Martinez F, Morales G, Martin A, van Grieken R (2008) Perfluorinated Nafion-modified SBA-15 materials for catalytic acylation of anisole. Appl Catal A Gen 347:169–178

    Article  CAS  Google Scholar 

  70. Collins NA, Trewella JC (1997) Alkylation process for desulfurization of gasoline. US. Patent No.5, 599,441

    Google Scholar 

  71. Guo B, Wang R, Li Y (2010) The performance of solid phosphoric acid catalysts and macroporous sulfonic resins on gasoline alkylation desulfurization. Fuel Process Technol 91:1731–1735

    Article  CAS  Google Scholar 

  72. Guo B, Wang R, Li Y (2011) Gasoline alkylation desulfurization over amberlyst 35 resin: influence of methanol and apparent reaction kinetics. Fuel 90:713–718

    Article  CAS  Google Scholar 

  73. Wang R, Wan J, Li Y, Sun H (2014) An insight into effect of methanol on catalytic behavior of amberlyst 35 resins for alkylation desulfurization of fluid catalytic cracking gasoline. Fuel 115:609–617

    Article  CAS  Google Scholar 

  74. Wang R, Wan J, Li Y, Sun H (2015) A further catalysis mechanism study on amberlyst 35 resins application in alkylation desulfurization of gasoline. Chem Eng Sci 137:59–68

    Article  CAS  Google Scholar 

  75. Xu W, Li Y (2015) Alkylation desulfurization of the C9 fraction over amberlyst 36 resin. RSC Adv 5:2908–2913

    Article  CAS  Google Scholar 

  76. Olah GA (1973) Friedel-Crafts chemistry. Wiley, New York

    Google Scholar 

  77. Olah GA, Iyer PS, Prakash GKS (1986) Perfluorinated resin sulfonic acid (Nation–H) catalysis in synthesis. Synthesis 7:513–531

    Article  Google Scholar 

  78. Olah GA, Molnar A, Prakash GKS (2018) Hydrocarbon chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  79. Roberts RM, Khalaf AA (1984) Friedel-Crafts alkylation chemistry: a century of discovery. Marcel Dekker, New York

    Google Scholar 

  80. Harmer MA, Sun Q, Farneth WE (1996) High surface area Nafion† Resin/Silica Nanocomposites: a new class of solid acid catalyst. J Am Chem Soc 118:7708–7715

    Article  CAS  Google Scholar 

  81. Harmer MA, Sun Q, Vega AJ, Farneth WE, Heidekum A, Hoelderich WF (2000) Nafion resin-silica nanocomposite solid acid catalysts. Microstructure—processing—property correlations. Green Chem 6:7–14

    Article  Google Scholar 

  82. Lachter ER, San Gil RAS, Tabak D, Costa VG, Chaves CPS, Santos JA (2000) Alkylation of toluene with aliphatic alcohols and 1-octene catalyzed by cation-exchange resins. React Funct Polym 44:1–7

    Article  CAS  Google Scholar 

  83. Fernandes RM, Lachter ER (2005) Evaluation of sulfonic resins for liquid phase alkylation of toluene. Catal Commun 6:550–554

    Article  CAS  Google Scholar 

  84. Cadenas M, Bringué R, Fité C, Iborra M, Ramírez E, Cunill F (2014) Alkylation of toluene with 1-hexene over macroreticularion-exchange resins. Appl Catal A Gen 485:143–148

    Article  CAS  Google Scholar 

  85. Silva MSM, Costa CL, Pinto MM, Lachter E (1995) Benzylation of benzene, toluene and anisole with benzyl alcohol catalyzed by cation-exchange resins. React Polym 25:55–61

    Article  Google Scholar 

  86. Coutinho FMB, Aponte ML, Barbosa CCR, Costa VG, Lachter ER, Tabak D (2003) Resinas Sulfônicas: Síntese, Caracterização e Avaliação em Reações de Alquilação. Polímeros: Ciência e Tecnologia 13: 141–146

    Google Scholar 

  87. Siril PF, Cross HE, Brown DR (2008) New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J Mol Catal A Chem 279:63–68

    Article  CAS  Google Scholar 

  88. Rosenwald RH (1978) In: Alkylphenols, M. Grayson (eds) Kirk-othmer encyclopedia of chemical technology, Wiley, New York

    Google Scholar 

  89. Loev B, Massengale JT (1957) Cation exchange resins as catalysts in the alkylation of phenol. J Org Chem 22:988–989

    Article  CAS  Google Scholar 

  90. Niederl JB (1938) Disobutylphenol synthesis-structure-properties-derivatives. Ind Eng Chem 30:1269–1274

    Article  CAS  Google Scholar 

  91. Sharma MM, Patwardhan AA (1990) Alkylation of phenol with 1-dodecene and diisobutylene in the presence of a cation exchanger as the catalyst. Ind Eng Chem Res 29:29

    Article  Google Scholar 

  92. Chaudhuri B, Sharma MM (1991) Alkylation of phenol with α-methylstyrene, propylene, butenes, isoamylene, 1-octene, and diisobutylene: heterogeneous vs homogeneous catalysts. Ind Eng Chem Res 30:227–231

    Article  CAS  Google Scholar 

  93. Chakrabarti A, Sharma MM (1992) Alkylation of phenol with cyclohexene catalysed by cationic ion-exchange resins and acid-treated clay: O-versus C-alkylation. React Polym 17:331–340

    Article  CAS  Google Scholar 

  94. Malshe VC, Sujatha ES (1997) Regeneration and reuse of cation-exchange resin catalyst used in alkylation of phenol. React Funct Polym 35:159–168

    Article  CAS  Google Scholar 

  95. Malshe VC, Sujatha ES (2000) Phenol based resin as alkylation catalyst. React Funct Polym 43:183–194

    Article  CAS  Google Scholar 

  96. Yadav GD, Rahuman MSM (2003) Efficacy of solid acids in the synthesis of butylated hydroxy anisoles by alkylation of 4-methoxyphenol with MTBE. Appl Catal A 253:113–123

    Article  CAS  Google Scholar 

  97. Yadav GD, Murkute AD (2004) Novel efficient mesoporous solid acid catalyst UDCaT-4: dehydration of 2-propanol and alkylation of mesitylene. Langmuir 20:11607–11619

    Article  CAS  PubMed  Google Scholar 

  98. Yadav GD, Salgaonkar SS (2005) Selectivity engineering of 2,6-diisopropylphenol in isopropylation of phenol over Cs2.5H0.5PW12O40/K-10 clay. Ind Eng Chem Res 44:1706–1715

    Article  CAS  Google Scholar 

  99. Yadav GD, Pathre GS (2006) Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene. J Mol Catal Chem 243:77–84

    Article  CAS  Google Scholar 

  100. Pittman CU, Yang X, Chatterjee S, Zhang Z, Zhu X (2010) Reaction of phenol, water, acetic acid, methanol, and 2-hydroxymethylfuran with olefins as models for bio-oil upgrading. Ind Eng Chem Res 49:2003–2013

    Article  CAS  Google Scholar 

  101. Freire MA, Mendes DTSL, Freitas LS, Beerthuis R, Amarante SF, Ramos ALD (2017) Acid-catalyzed liquid-phase alkylation of phenol with branched and linear olefin isomers. Catal Today 289:192–203

    Article  CAS  Google Scholar 

  102. Ronchin L, Quartarone G, Vavasori A (2012) Kinetics and mechanism of acid catalyzed alkylation of phenol with cyclohexene in the presence of styrene divinylbenzene sulfonic resins. J Mol Catal Chem 353:192–203

    Article  CAS  Google Scholar 

  103. Krymkin NY, Shakun VA, Nesterova TN, Naumkin PV, Shuraev MV (2016) Theory and practice of alkyl phenol synthesis. tert-octylphenols. Ind Eng Chem Res 55:9829–9839

    Article  CAS  Google Scholar 

  104. Teodorescu F, Enache A, Sandulescu M (2017) Selective alkylation of m-cresol with isopropyl alcohol under solvent-free conditions. Arkivoc 5:58–66

    Article  Google Scholar 

  105. Ma Q, Chakraborty D, Fglioni F, Muller P, Goddard WA, Harris T, Campbell C, Tang YC (2006) Alkylation of phenol: a mechanistic view. J Phys Chem A 110:2246–2252

    Article  CAS  PubMed  Google Scholar 

  106. Bilenchenko NV, Nesterova TN, Chernyshov DA, Shakun VA, Krymkin NY, Tarasov AV, Voronin IO (2016) Sulfonic acid cation-exchange resins in the synthesis of straight-chain alkylphenols. Catal Ind 8:16–22

    Article  Google Scholar 

  107. Iovel I, Goldberg YS, Shymanska M (1991) Hydroxymethylation of methylsubstituted pyrrole, thiophene, and furan in the presence of H+ cation exchangers. Chem Heterocycl Comp 27:1316–1318

    Article  Google Scholar 

  108. Feng XL, Guan CJ, Zhao CX (2003) Ion exchange resin catalysed reactions of indole with imines: formation of diindolylmethanes. J Chem Res (S) 11:744–745

    Article  Google Scholar 

  109. Feng XL, Guan CJ, Zhao CX (2004) Ion exchange resin catalyzed condensation of indole and carbonyl compounds-synthesis of bis-indolylmethanes. Synth Commun 34:487–492

    Article  CAS  Google Scholar 

  110. Lin ZH, Guan CJ, Feng XL, Zhao CX (2006) Synthesis of macroreticular p-(ω-sulfonic perfluoroalkylated)polystyrene ion-exchange resin and its application as solid acid catalyst. Mol Catal A Chem 247:19–26

    Article  CAS  Google Scholar 

  111. Magesh CJ, Nagarajan R, Karthik M, Perumal PT (2004) Synthesis and characterization of bis(indolyl)methanes, tris(indolyl)methanes and new diindolylcarbazolylmethanes mediated by Zeokarb-225, a novel, recyclable, eco-benign heterogenous catalyst. Appl Catal A Gen 266:1–10

    Article  CAS  Google Scholar 

  112. Surasani R, Kalita D, Chandrasekha KB (2013) Indion Ina 225H resin as a novel, selective, recyclable, eco-benign heterogeneous catalyst for the synthesis of bis(indolyl)methanes. Green Chem Lett Rev 6:113–122

    Article  CAS  Google Scholar 

  113. Bandini M, Fagioli M, Umani-Ronchi A (2004) Solid acid-catalysed michael-type conjugate addition of indoles to electron-poor C=C bonds: towards high atom economical semicontinuous processes. Adv Synth Catal 346:545–548

    Article  CAS  Google Scholar 

  114. Yadav JS, Reddy BUS, Kumar GGKSN, Rao KUR (2007) Cation-exchange resin as efficient, cost-effective and recyclable catalyst for the synthesis of 3-propargylindoles. Chem Lett 36:942–943

    Article  CAS  Google Scholar 

  115. Kadam S, Thirupathi P, Kim SS (2009) Amberlyst-15: an efficient and reusable catalyst for the Friedel-Crafts reactions of activated arenes and heteroarenes with α-amido sulfones. Tetrahedron 65:10383–10389

    Article  CAS  Google Scholar 

  116. Wang Z, Ding K, Uozumi Y (2008) An overview of heterogeneous asymmetric catalysis. In: Din K, Uozumi Y (eds) Handbook of asymmetric heterogeneous catalysis, Wiley, New York

    Google Scholar 

  117. Desyatkin VG, Anokhin MV, Rodionov VO, Beletskaya IP (2016) Polystyrene-supported Cu(II)-R-box as recyclable catalyst in asymmetric Friedel-Crafts reaction. Russ J Org Chem 52:1727–1737

    Article  CAS  Google Scholar 

  118. Akagawa K, Yamashita T, Sakamoto S, Kudo K (2009) Friedel-Crafts-type alkylation in aqueous media using resin-supported peptide catalyst having polyleucine. Tetrahedron Lett 50:5602–5604

    Article  CAS  Google Scholar 

  119. Akagawa K, Umezawa R, Kudo K (2012) Asymmetric one-pot sequential Friedel–Crafts-type alkylation and α-oxyamination catalyzed by a peptide and an enzyme. Beilstein J Org Chem 8:1333–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yu L, Chen D, Li J, Wang PG (1997) Preparation, characterization, and synthetic uses of lanthanide (III) catalysts supported on ion exchange resins. J Org Chem 62:3575–3581

    Article  CAS  Google Scholar 

  121. Havránková E, Csöllei J, Pazdera P (2017) Comparative study for 3, 3′-[(4-X-phenyl)-methanediyl] bis(1H-indoles) synthesis catalyzed by Ce(III) cations. Int J Engin Res Sci 3:9–14

    Google Scholar 

  122. Zhu C, Shen T, Liu D, Wu J, Chen Y, Wang L, Guo K, Ying H, Ouyang P (2016) Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose. Green Chem 18:2165–2174

    Article  CAS  Google Scholar 

  123. Iovel I, Goldberg Y, Shymanska M (1989) Hydroxymethylation of furan and its derivatives in the presence of cation-exchange resins. J Mol Cat 57:91–103

    Article  CAS  Google Scholar 

  124. Iovel IG, Lukevics E (1998) Hydroxymethylation and alkylation of compounds of the furan, thiophene, and pyrrole series in the presence of H+ cations (review). Chem Heterocycl Comp 34:1–12

    Article  CAS  Google Scholar 

  125. Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int 50:2375–2378

    Article  CAS  Google Scholar 

  126. Corma A, de la Torre O, Renz M (2012) Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy Environ Sci 5:6328–6344

    Article  CAS  Google Scholar 

  127. Li G, Li N, Wang Z, Li C, Wang A, Wang X, Cong Y, Zhang T (2012) Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. Chem Sus Chem 5:1958–1966

    Article  CAS  Google Scholar 

  128. Li G, Li N, Yang J, Wang A, Wang X, Cong Y, Zhang T (2013) Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose. Bioresour Technol 134:66–72

    Article  CAS  PubMed  Google Scholar 

  129. Li G, Li N, Li S, Wang A, Cong Y, Wang X, Zhang T (2013) Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan. Chem Commun 49:5727–5729

    Article  CAS  Google Scholar 

  130. Li S, Li N, Li G, Wang A, Conga Y, Wang X, Zhang T (2014) Synthesis of diesel range alkanes with 2-methylfuran and mesityloxide from lignocellulose. Catal Today 234:91–99

    Article  CAS  Google Scholar 

  131. Li G, Li N, Yang J, Wang A, Wang X, Cong Y, Zhang T (2014) Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose. Energy Fuels 28:5112–5118

    Article  CAS  Google Scholar 

  132. Deng Q, Han P, Xu J, Zou JJ, Wang L, Zhang X (2015) Highly controllable and selective hydroxyalkylation/alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel. Chem Eng Sci 138:239–243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Roditi Lachter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lachter, E.R., Rodrigues, J.A., Teixeira, V.G., Mendonça, R.H., Ribeiro, P.S., Villabona-Estupiñan, S. (2019). Use of Ion-Exchange Resins in Alkylation Reactions. In: Inamuddin, Rangreez, T., M. Asiri, A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06085-5_3

Download citation

Publish with us

Policies and ethics