Skip to main content

The Plasma Atom

  • Chapter
  • First Online:
Plasma Atomic Physics

Abstract

In this chapter the statistical description of atomic radiative-collisional processes for complex heavy ions in electron atomic collisions is developed. The local plasma frequency model and the Thomas-Fermi electron density distribution are applied for the description of collisional processes making it possible to express the atomic characteristics (energy structure and oscillator strengths) as well as transition probabilities in terms of a functional of the electron density distribution inside atoms and ions. The Fermi method of equivalent photons allows to express the collisional rates in terms of photo-excitation or ionization cross sections. The statistical description is applied for efficient calculations of ionization cross sections and rates for different highly charged ions demonstrating a very good correspondence with detailed quantum mechanical calculations. Likewise, the dielectronic recombination rates obtained from statistical models are compared with quantum results for different ionization states of many chemical elements. The statistical method is in very good agreement with sophisticated detailed level-by-level quantum calculations and is of much higher precision than the usually applied Burgess formula. Finally, the statistical approach is applied for calculations of radiative energy losses of tungsten ions in hot thermonuclear plasmas. The results for the low-density case (coronal condition) of magnetically confined plasmas demonstrate a rather good correspondence with more detailed numerical calculations and measurements. In addition, the transition from the low-density corona condition to the high-density Boltzmann limit can be described via a simple application of detailed balance in the two-state approximation. In general, quite reasonable precision of the statistical model for different kinds of radiative-collisional processes is demonstrated. Moreover, general formulae and scaling relations can be obtained from the statistical approach that would otherwise difficult to obtain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • V.A. Astapenko, L.A. Bureyeva, V.S. Lisitsa, Polarization mechanism for bremsstrahlung and radiative recombination in a plasma with heavy ions. Plasma Phys. Rep. 28, 303 (2002)

    Article  ADS  Google Scholar 

  • V.A. Astapenko, L.A. Bureyeva, V.S. Lisitsa, Plasma models of atom and radiative-collisional processes, in Reviews of Plasma Physics, vol. 23, 1, ed. by V.D. Shafranov (Kluwer Academic/Plenum Publishers, New York, 2003); ISBN 0-306-11069-5

    Google Scholar 

  • C.P. Balance, S.D. Loch, M.S. Pindzola, D.C. Griffin, Dielectronic recombination of W35+. J. Phys. B: At. Mol. Opt. Phys. 43, 205201 (2010)

    Article  ADS  Google Scholar 

  • P. Beiersdorfer, M.J. May, J.H. Scofield, S.B. Hansen, Atomic physics and ionization balance of high-Z ions: critical ingredients for characterizing and understanding high-temperature plasma. HEDP 8, 271 (2012)

    ADS  Google Scholar 

  • E. Behar, P. Mandelbaum, J.L. Schwob, A. Bar-Shalom, J. Oreg, W.H. Goldstein, Dielectronic recombination rate coefficients for highly-ionized Ni-like atoms. Phys. Rev. A 54, 3070 (1996)

    Article  ADS  Google Scholar 

  • I.L. Beigman, L.A. Vainshtein, B.N. Chichkov, Dielectronic recombination. JETP 53, 490 (1981)

    Google Scholar 

  • W. Brandt, S. Lundqvist, Atomic oscillations in the statistical approximation. Phys. Rev. 139, A612 (1965)

    Article  ADS  Google Scholar 

  • A. Burgess, Dielectronic Recombination and the Temperature of the Solar Corona. Astrophys. J. 139, 776 (1964)

    Article  ADS  Google Scholar 

  • R.G. Cowan, The Theory of Atomic Structure and Spectra (California University Press, Berkeley, 1981)

    Book  Google Scholar 

  • A.V. Demura, M.B. Kadomtsev, V.S. Lisitsa, V.A. Shurygin, Statistical model of radiation losses for heavy ions in plasmas. JETP Lett. 98, 786 (2013)

    Article  ADS  Google Scholar 

  • A.V. Demura, M.B. Kadomtsev, V.S. Lisitsa, V.A. Shurygin, Universal statistical approach to radiative and collisional processes with multielectron ions in plasmas. HEDP 15, 49 (2015a)

    Google Scholar 

  • A.V. Demura, M.B. Kadomtsev, V.S. Lisitsa, V.A. Shurygin, Statistical model of electron impact ionization of multielectron ions. J. Phys. B.: At. Molec. Opt. Phys. 48, 055701 (2015b)

    Google Scholar 

  • I.K. Dmitrieva, G.I. Plindov, The improved Thomas-Fermi model: chemical and ionization potentials in atoms. J. Physique 45, 85 (1984)

    Article  Google Scholar 

  • S. Dyachkov, P. Leavshov, D. Minakov, Region of validity of the Thomas-Fermi model with corrections. Phys. Plasmas 23, 112705 (2016)

    Article  ADS  Google Scholar 

  • E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Zeitschrift für Physik 48, 73 (1928)

    Article  ADS  Google Scholar 

  • P. Fromy, C. Deutsch, G. Maynard, Thomas-Fermi-like and average atom models for dense and hot matter. Phys. Plasmas 3, 714 (1996)

    Article  ADS  Google Scholar 

  • P. Gombas, Erweiterung der Statistischen Theroy des Atoms. Zeitschrift für Physik 121, 523 (1943)

    Article  ADS  Google Scholar 

  • P. Gombas, Die statistische theorie des Atoms und ihre Anwendungen (Springer, Wien, 1949)

    Book  Google Scholar 

  • P. Gombas, Present state of the statistical theory of atoms. Rev. Mod. Phys. 35, 512 (1963)

    Article  ADS  Google Scholar 

  • I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers, N.C. Pyper, An atomic multiconfigurational Dirac-Fock package. Comput. Phys. Commun. 21, 207 (1980)

    Article  ADS  Google Scholar 

  • G. Kemister, S. Nordholm, A radially restricted Thomas–Fermi theory for atoms. J. Chem. Phys. 76, 5043 (1982)

    Article  ADS  Google Scholar 

  • V.D. Kirillow, B.A. Trubnikov, S.A. Trushin, Role of impurities in anomalous plasma resistance. Sov. J. Plasma Phys. 1, 117 (1975)

    ADS  Google Scholar 

  • V.I. Kogan, A.B. Kukushkin, V.S. Lisitsa, Kramers electrodynamics and electron-atomic radiative collisional processes. Phys. Rep. 213, 1 (1992)

    Article  ADS  Google Scholar 

  • D.S. Leontyev, V.S. Lisitsa, Statistical model of dielectronic recombination of heavy ions in plasmas. Contrib. Plasma Phys. 56, 846 (2016)

    Article  ADS  Google Scholar 

  • E.H. Lieb, B. Simon, The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22 (1977)

    Article  MathSciNet  Google Scholar 

  • S.D. Loch, J.A. Ludlow, M.S. Pindzola, A.D. Whiteford, D.C. Griffin, Electron-impact ionization of atomic ions in the W isonuclear sequence. Phys. Rev. A 72, 052716 (2005)

    Article  ADS  Google Scholar 

  • F. Petitdemange, F.B. Rosmej, Dielectronic satellites and Auger electron heating : irradiation of solids by intense XUV-Free Electron Laser radiation, in New Trends in Atomic & Molecular Physics—Advanced Technological Applications, vol. 76, ed. by M. Mohan (Springer 2013), pp. 91–114, ISBN 978-3-642-38166-9

    Google Scholar 

  • R. Piron, F. Gilleron, Y. Aglitskiy, H.-K. Chung, C.J. Fontes, S.B. Hansen, O. Marchuk, H.A. Scott, E. Stambulchik, Yu. Ralchenko, Review of the 9th NLTE code comparison workshop. HEDP 23, 38 (2017)

    ADS  Google Scholar 

  • D.E. Post, R.V. Jensen, C.B. Tarter, W.H. Grasverger, W.A. Lokke, Steady-state raditiative coling rates for low-density high-temperature plasmas. ADNDT 20, 397 (1977)

    Article  ADS  Google Scholar 

  • D. Post, J. Abdallah, R.E.H. Clark, N. Putvinskaya, Calculations of energy losses due to atomic processes in tokamaks with applications to the international thermonuclear experimental reactor divertor. Phys. Plasmas 2, 2328 (1995)

    Article  ADS  Google Scholar 

  • V.M. Povyshev, A.A. Sadovoy, V.P. Shevelko, G.D. SHirkov, E.G. Vasina, V.V. Vatulin, Electron-Impact Ionization Cross Sections of H, He, N, O, Ar, Xe, Au, Pb Atoms and their Ions in the Electron Energy Range from the Threshold up to 200 keV, Preprint JINR E9-2001-148, Dubna 2001

    Google Scholar 

  • T. Pütterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O’Mullane, H.P. Summers, ASDEX upgrade team, calculation and experimental test of the cooling factor of tungsten. Nuc. Fusion 50, 025012 (2010)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, A.Ya. Faenov, T.A. Pikuz, F. Flora, P. Di Lazzaro, S. Bollanti, N. Lizi, T. Letardi, A. Reale, L. Palladino, O. Batani, S. Bossi, A. Bornardinello, A. Scafati, L. Reale, Line Formation of High Intensity Heβ-Rydberg Dielectronic Satellites 1s3lnl′ in Laser Produced Plasmas. J. Phys. B Lett.: At. Mol. Opt. Phys. 31, L921 (1998)

    Google Scholar 

  • F.B. Rosmej, L.A. Vainshtein, V.A. Astapenko, V.S. Lisitsa, Statistical and quantum photoionization cross sections in plasmas: analytical approaches for any configurations including inner shells, Matter and Radiation at Extremes (Review) 5, 064202 (2020a) open access: https://aip.scitation.org/doi/10.1063/5.0022751

  • F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, L.A. Vainshtein, Dielectronic recombination in non-LTE plasmas, Matter and Radiation at Extremes (Review) 5, 064201 (2020b) open access: https://doi.org/10.1063/5.0014158

  • H.A. Scott, S.B. Hansen, Advances in NLTE modeling for integrated simulations. HEDP 6, 39 (2010)

    ADS  Google Scholar 

  • I.I. Sobelman, L.A. Vainshtein, Excitation of Atomic Spectra (Alpha Science, 2006); ISBN 978-1842652336

    Google Scholar 

  • A. Sommerfeld, Integrazione asintotica dell’equazione differentiale di Thomas–Fermi. Rend. R. Accademia dei Lincei 15, 293 (1932)

    Google Scholar 

  • M. Stenke, K. Aichele, D. Harthiramani, G. Hofmann, M. Steidl, R. Volpel, E. Salzborn, Electron-impact single-ionization of singly and multiply charged tungsten ions. J. Phys. B: At. Mol. Opt. Phys. 28, 2711 (1995)

    Article  ADS  Google Scholar 

  • H.P. Summers, ADAS Users Manual, JET—IR 06 (Abingdon: JET Joint Undertaking, 1994)

    Google Scholar 

  • L.A. Vainshtein, V.P. Shevelko, The structure and characteristics of ions in hot plasmas, in Physika i Technika Spektroscopii 1986 (in Russian)

    Google Scholar 

  • A.V. Vinogradov, O.I. Tolstikhin, Plasma approach to the theory of photoabsorption and polarizability of complex atoms. Sov. Phys. JETP 69, 683 (1989)

    Google Scholar 

  • Z. Wu, Y. Fu, X. Ma, M. Li, L. Xie, J. Jiang, C. Dong, Electronic impact excitation and dielectronic recombination of highly charged Tungsten ions. ATOMS 3, 474 (2015)

    Article  ADS  Google Scholar 

  • R. Ying, G. Kalman, Thomas–Fermi model for dense plasmas. Phys. Rev. A 40, 3927 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Rosmej .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosmej, F.B., Astapenko, V.A., Lisitsa, V.S. (2021). The Plasma Atom. In: Plasma Atomic Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-05968-2_9

Download citation

Publish with us

Policies and ethics