We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Quantum Atomic Population Kinetics in Dense Plasmas | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Quantum Atomic Population Kinetics in Dense Plasmas

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Plasma Atomic Physics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 1170 Accesses

Abstract

The atomic populations are the fundamental quantities for various different disciplines in science and applications. Although the rate equation model has widely been employed, it has principal deficiencies as it considers only populations related to the squared of the wave functions, while all mixed populations (coherences) are missing. In plasmas, however, large effects of strong plasma electric microfields on atomic (usually highly charged ions) energy levels are encountered that require more advanced descriptions, e.g., energy level evolution under the action of a quasi-static electric ion field including coherence effects. For real systems, these phenomena cannot be described consistently in the framework of the Schrödinger picture but request the density matrix description in contrast to the standard population balance rate equations. The general system of density matrix equations, however, is extremely challenging. It is demonstrated that the system can be transformed to a standard form of population kinetic rate equations with additional terms describing the effect of the ion electric field, the so-called quantum F-matrix theory (QFMT) allowing to construct real (large) closed model systems. The density matrix approach results in a new understanding of the fundamental physical problem connected with the transition of atomic populations to the Boltzmann equilibrium in dense plasmas. The standard transition is provided by electron collisions only satisfying the principle of detailed balance related to a statistical population of energy levels over magnetic quantum numbers. However, the effect of static electric fields on the atomic population is selective in magnetic quantum numbers resulting in a destruction of statistical Boltzmann populations. The interplay between the statistical effect of electrons and non-statistical effect of quasi-static ions is illustrated in detail for autoionizing atomic states of highly charged ions in dense laser-produced plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A.N. Antia, Rational function approximations for Fermi-Dirac integrals. Astrophys. J. Suppl. Ser. 84, 101 (1993)

    Article  ADS  Google Scholar 

  • A.N. Anufrienko, A.L. Godunov, A.V. Demura, Y.K. Zemtsov, V.S. Lisitsa, A.N. Starostin, M.D. Taran, V.A. Shchipakov, Nonlinear interference effects in Stark broadening of ion lines in a dense plasma. Sov. Phys. JETP 71, 728 (1990)

    Google Scholar 

  • A.N. Anufrienko, A.E. Bulyshev, A.L. Godunov, A.V. Demura, Y.K. Zemtsov, V.S. Lisitsa, A.N. Starostin, Nonlinear interference effects and ion dynamics in the kinetic theory of Stark broadening of the spectral lines of multicharged ions in a dense plasma. Sov. Phys. JETP 76, 219 (1993)

    ADS  Google Scholar 

  • E.K. Akhmedov, A.L. Godunov, Y.K. Zemtsov, V.A. Makhrov, A.N. Starostin, M.D. Taran, Profile of the Lyα line of hydrogen-like ions in a dense plasma with allowance for the fine structure and the Lamb shift. Sov. Phys JETP 62, 266 (1985)

    Google Scholar 

  • M. Baranger, Problem of overlapping lines in the theory of pressure broadening. Phys. Rev. 111, 494 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966)

    Google Scholar 

  • V.A. Boiko, A.V. Vinogradov, S.A. Pikuz, I.Y. Skobelev, A.Ya. Faenov, X-ray spectroscopy of laser produced plasmas. J. Sov. Laser Research 6, 82 (1985)

    ADS  Google Scholar 

  • A. Brissaud, U. Fritsch, Theory of Stark Broadening II. - Exact Line Profile with Model Microfield. JQSRT 11, 1767 (1971)

    Article  ADS  Google Scholar 

  • L.A. Bureyeva, V.S. Lisitsa, A Perturbed Atom. In: Astrophysics and Space Science Reviews 11 (2000)

    Google Scholar 

  • L.D. Cloutman, Numerical evaluation of the Fermi-Dirac integrals. Astrophys. J. Suppl. Ser. 71, 677 (1989)

    Article  ADS  Google Scholar 

  • J. Cooper, G.K. Oertel, Electron impact broadening of isolated lines of neutral atoms in a plasma. Phys. Rev. 180, 286 (1969)

    Article  ADS  Google Scholar 

  • R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkely, 1981)

    Book  Google Scholar 

  • A.S. Dawydow, Quantum Mechanics (1981)

    Google Scholar 

  • C. de Michelis, M. Mattioli, Soft-X-ray spectroscopy of laboratory plasmas. Nucl. Fusion 21, 677 (1981)

    Article  ADS  Google Scholar 

  • E.L. Degl’Ionnocenti, M. Landolfi, Polarization in Spectral Lines (Kluwer Academic Publishers, Dordrecht, 2004)

    Book  Google Scholar 

  • A.V. Demura, Physical models of plasma microfield. Int. J. Spectrosc. Rev. 42 (2010). https://doi.org/10.1155/2010/671073 (Article ID 671073)

  • C. Deutsch, L. Herman, H.-W. Drawin, Electron-impact broadening of overlapping HeI lines in plasmas. Phys. Rev. 178, 261 (1969a)

    Article  ADS  Google Scholar 

  • C. Deutsch, L. Herman, H.-W. Drawin, Asymptotic behavior of generalized width and shift functions in the electron-impact broadening theory of neutral spectral lines in plasmas. Phys. Rev. 186, 204 (1969b)

    Article  ADS  Google Scholar 

  • R.P. Drake, High-Energy-Density Physics (Springer, 2018)

    Google Scholar 

  • T. Fujimoto, A. Iwamae, Plasma Polarization Spectroscopy (Springer, Berlin, 2008)

    Book  Google Scholar 

  • H.R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964)

    Google Scholar 

  • H.R. Griem, Semiempirical formulas for the electron-impact widths and shifts of isolated ion lines in plasmas. Phys. Rev. 165, 258 (1968)

    Article  ADS  Google Scholar 

  • H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, London, 1974)

    Google Scholar 

  • H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, New York, 1997)

    Book  Google Scholar 

  • H.R. Griem, M. Blaha, P.C. Kepple, Stark-profile calculations for Lyman-series lines of one-electron ions in dense plasmas. PRA 19, 2421 (1979)

    Article  ADS  Google Scholar 

  • H.R. Griem, K.Y. Shen, Stark broadening of hydrogen lines in a plasma. Phys. Rev. 116, 4 (1959)

    Article  ADS  MATH  Google Scholar 

  • M.F. Gu, The flexible atomic code. Can. J. Phys. 86, 675 (2008)

    Article  ADS  Google Scholar 

  • C.F. Hooper, Electric microfield distributions in plasmas, J. Phys. Rev. 149, 77 (1966)

    Google Scholar 

  • C.F. Hooper Jr., Low-frequency component electric microfield distributions in plasmas. Phys. Rev. 165, 215 (1968)

    Article  ADS  Google Scholar 

  • I.N. Kosarev, V.S. Lisitsa, Model mircofield method for atomic state kinetics in dense plasmas: analytical solutions. J. Phys. B: At. Mol. Opt. Phys. 29, 1183 (1996)

    Article  ADS  Google Scholar 

  • V.I. Kogan, V.S. Lisitsa, A.D. Selidovkin, Two-level system with damping in a plasma. Sov. Phys. JETP 38, 76 (1973)

    Google Scholar 

  • V.S. Lisitsa, Stark broadening of hydrogen lines in plasmas. Sov. Phys. Usp. 20, 603 (1977)

    Article  ADS  Google Scholar 

  • V.S. Lisitsa, Atoms in Plasmas (Springer, New York, 1994)

    Book  Google Scholar 

  • R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford Science Publications, 2000)

    Google Scholar 

  • R.W.P. McWhirter, Spectral intensities, in Plasma Diagnostic Techniques, ed. by R.H. Huddelstone, S.L. Leonard (Academic Press, New York, 1965)

    Google Scholar 

  • D. Mihalas, Stellar Atmospheres, 2nd edn. (W.H. Freeman, San Francisco, 1978)

    Google Scholar 

  • D. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover Publications Inc., New York, 1999)

    Google Scholar 

  • H. Muirhead, The Principles of Elementary Particles (1965)

    Google Scholar 

  • A.Y. Potekhin, G. Chabrier, D. Gilles, Electric microfield distributions in electron-ion plasmas. Phys. Rev. E 65, 036412 (2002)

    Article  ADS  Google Scholar 

  • S.G. Rautian, A.M. Shalagin, Kinetic Problems of Non-linear Spectroscopy (North-Holland, 1991)

    Google Scholar 

  • O. Renner, R. Liska, F.B. Rosmej, Laser-produced plasma-wall interaction. Laser Part. Beams 27, 725 (2009)

    Article  ADS  Google Scholar 

  • O. Renner, F.B. Rosmej, Challenges of X-ray spectroscopy in investigations of matter under extreme conditions. Matter Radiat. Extrem. Rev. 4, 024201 (2019)

    Google Scholar 

  • F.B. Rosmej, Exotic states of high density matter driven by intense XUV/X-ray free electron lasers, in Free Electron Laser, InTech 2012, ed. by S. Varró (2012a), pp. 187–212. ISBN 978-953-51-0279-3

    Google Scholar 

  • F.B. Rosmej, X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas, in Highly Charged Ion Spectroscopic Research, ed. by Y. Zou, R. Hutton (Taylor and Francis, 2012b), pp. 267–341. ISBN: 978-1-4200-7904-3

    Google Scholar 

  • F.B. Rosmej, R.W. Lee, D.H.G. Schneider, Fast X-ray emission switches driven by intense X-ray free electron laser radiation. High Energy Density Phys. 3, 218 (2007)

    Google Scholar 

  • F.B. Rosmej, B. Deschaud, K. Bennadji, P. Indelicato, J.P. Marquès, Study of electric dipole matrix elements of He-like ions for X-ray line shape calculations. Phys. Rev. A 87, 022515 (2013)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, R. Dachicourt, B. Deschaud, D. Khaghani, M. Dozières, M. Smîd, O. Renner, Exotic X-ray emission from dense plasmas. J. Phys. B: Rev. Spec. Top. 48, 224005 (2015)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, R.W. Lee, Hollow ion emission driven by pulsed X-ray radiation fields. Europhys. Lett. 77, 24001 (2007)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, Y. Aouad, S. Ongala-Edoumou, A. Demura, V.S. Lisitsa, Private communications 2008–2019

    Google Scholar 

  • D. Salzmann, Atomic Physics in Hot Plasmas (Oxford University Press, New York, 1988)

    Google Scholar 

  • S. Sahal-Bréchot, M.S. Dimitrijevic, N.B. Nessib, Width and shifts of isolated lines of neutral and ionized atoms perturbed by collisions with electrons and ions: an outline of the semiclassical perturbation (SCP) method and of the approximations used for the calculations. Atoms 2, 225 (2015)

    Article  ADS  Google Scholar 

  • G.V. Sholin, A.V. Demura, V.S. Lisitsa, Theory of stark broadening of hydrogen lines in plasma. Sov. Phys. JETP 37, 1057 (1973)

    ADS  Google Scholar 

  • E.W. Smith, C.F. Hooper, Relaxation theory of spectral line broadening in plasmas. Phys. Rev. 157, 126 (1967)

    Article  ADS  Google Scholar 

  • I.I. Sobelman, Theory of Atomic Spectra (Alpha Science International Ltd., Oxford, UK, 2006)

    Google Scholar 

  • I.I. Sobelman, L.A. Vainshtein, Excitation of Atomic Spectra (Alpha Science International Ltd., Oxford, UK, 2006)

    Google Scholar 

  • A. Sommerfeld, Thermodynamics and Statistical Mechanics. Lectures on Theoretical Physics V (Academic Press, New York, 1971)

    Google Scholar 

  • A. Unsöld, Physik der Sternatmosphären (Springer, Berlin, 1955)

    Book  MATH  Google Scholar 

  • L.A. Vainshtein, V.P. Shevelko, The structure and characteristics of ions in hot plasmas. Phys. Techn. Spektrosc. (1986) (in Russian)

    Google Scholar 

  • V. Weisskopf, Die Streuung des Lichts an ageregten Atomen. Z. Phys. 85, 451 (1933)

    Article  ADS  MATH  Google Scholar 

  • Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Publications Inc., 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Rosmej .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosmej, F.B., Astapenko, V.A., Lisitsa, V.S. (2021). Quantum Atomic Population Kinetics in Dense Plasmas. In: Plasma Atomic Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-05968-2_7

Download citation

Publish with us

Policies and ethics