Skip to main content

Atomic Population Kinetics

  • Chapter
  • First Online:
Plasma Atomic Physics

Abstract

This chapter introduces to the theory of atomic population kinetics and radiative properties of atomic and ionic bound–bound transitions. Particular attention is devoted to the general problems related to an extremely large number of kinetic equations describing populations of Rydberg and autoionization atomic states in plasmas. A new method of reduced kinetics for autoionizing states, the virtual contour shape kinetic theory (VCSKT), is described in details. The method is based on a probability method for LTE- and non-LTE-level populations that allows effective level reduction while preserving all detailed atomic transitions. The representation employs effective relaxation constants that have analytical solutions. The comparison with detailed level-by-level calculations demonstrates high accuracy and large efficiency of the VCSKT. In order to solve many states’ kinetic problems for Rydberg atomic states, the quasi-classical representation of the system of kinetic equations is proposed. In particular, the two-dimensional radiative cascades between Rydberg atomic states are described by a purely classical motion of atomic electrons in a Coulomb field that lose energy and orbital momentum. The general collisional-radiative model for large principal quantum numbers is reduced to an effective diffusion in two-dimensional energy and orbital momentum space. The results of these new kinetic models are compared with standard collisional-radiative kinetics demonstrating an important reduction of computer times, the possibility to obtain scaling relations and to independently study the precision of complex quantum calculations for these many level kinetic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Abdallah Jr., M.E. Sherrill, The reduced detailed configuration accounting RDCA model for NLTE plasma calculations. HEDP 4, 124 (2008)

    ADS  Google Scholar 

  • V.A. Abramov, F.F. Baryshnikov, A.I. Kazanskii, I.V. Komarov, V.S. Lisitsa, M.I. Chibisov, in Charge Exchange of Atoms on Multiply Charged Ions, Reviews of Plasma Physics, vol. 12, ed. by M.A. Leantovich, B.B. Kadomtsev (Consultants Bureau, New York, London, 1987)

    Google Scholar 

  • A. Bar-Shalom, J. Oreg, W.H. Goldstein, D. Shvarts, A. Zigler, Super-transition-arrays: a model for the spectral analysis of hot, dense plasma. Phys. Rev. A 40, 6414 (1995)

    Google Scholar 

  • J. Bauche, C. Bauche-Arnoult, O. Peyrusse, Effective temperatures in hot dense plasmas. JQSRT 99, 55 (2006)

    Article  ADS  Google Scholar 

  • I.L. Beigman, Analytical methods for highly excited level populations in hot plasma, in Astrophysics and Space Science Reviews, OPA (2001). ISBN-9789058232410

    Google Scholar 

  • I.L. Beigman, I.M. Gaisinsky, An analytical description of populations of highly excited levels. JQSRT 28, 441 (1982)

    Article  ADS  Google Scholar 

  • S.T. Belyaev, G.I. Budker, Multiquantum recombination in ionized gases, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, ed. by M.A. Leontovich, vol. 3 (Pergamon Press, Oxford, 1958)

    Google Scholar 

  • L.M. Biberman, V.S. Vorobiev, I.T. Yakubov, Kinetics of a non-equilibrium low-temperature plasma (Nauka, Moscow, 1982)

    Google Scholar 

  • V.A. Boiko, A.V. Vinogradov, S.A. Pikuz, I.Y. Skobelev, A.Y. Faenov, X-ray spectroscopy of laser produced plasmas. J. Sov. Laser Res. 6, 82 (1985)

    Google Scholar 

  • H.K. Chung, C. Bowen, C.J. Fontes, S.B. Hansen, Yu. Ralchenko, Comparison and analysis of collisional-radiative models at the NLTE-7 workshop. HEDP 9, 645 (2013)

    ADS  Google Scholar 

  • J. Colgan, C.J. Fontes, H. Zhang, J. Abdallah Jr., Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV. Atoms 3, 76 (2015). https://doi.org/10.3390/atoms3020076

    Article  ADS  Google Scholar 

  • R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkely, 1981)

    Book  Google Scholar 

  • A.V. Demura, M.B. Kadomtsev, V.S. Lisitsa, V.A. Shurygin, Statistical model of radiation losses for heavy ions in plasmas. JETP Lett. 98, 786 (2013)

    Article  ADS  Google Scholar 

  • G. Ecker, Theory of Fully Ionized Plasmas (Academic Press, New York 1972)

    Google Scholar 

  • M.R. Flannery, D. Vrinceanu, Quantal and classical radiative cascade in Rydberg plasmas. Phys. Rev. A 68, 030502(R) (2003)

    Article  ADS  Google Scholar 

  • A.H. Gabriel, Dielectronic satellite spectra for highly-charged he-like ion lines. Mon. Not. R. Astro. Soc. 160, 99 (1972)

    Article  ADS  Google Scholar 

  • S.H. Glenzer, F.B. Rosmej, R.W. Lee, C.A. Back, K.G. Estabrook, B.J. MacCowan, T.D. Shepard, R.E. Turner, Measurements of suprathermal electrons in hohlraum plasmas with X-ray spectroscopy. Phys. Rev. Lett. 81, 365 (1998)

    Article  ADS  Google Scholar 

  • H.R. Griem, On the narrowing of radio recombination lines at high principal quantum numbers. Astrophys. J. 620, L133 (2005)

    Article  ADS  Google Scholar 

  • D. Grin, C.M. Hirata, Cosmological hydrogen recombination: the effect of extremely high-n states. Phys. Rev. D 81, 083005 (2010)

    Article  ADS  Google Scholar 

  • S.B. Hansen, J. Bauche, C. Bauche-Arnoult, Superconfiguration widths and their effects on atomic models. HEDP 7, 27 (2011)

    ADS  Google Scholar 

  • V.L. Jacobs, M. Blaha, Effects of angular-momentum–changing collisions on dielectronic satellite spectra. Phys. Rev. A 21, 525 (1980)

    Article  ADS  Google Scholar 

  • M.B. Kadomtsev, M.G. Levashova, V.S. Lisitsa, Universal two-dimensional kinetics of the populations of Rydberg atoms in plasmas. JETP Lett. 85, 493 (2007)

    Google Scholar 

  • M.B. Kadomtsev, M.G. Levashova, V.S. Lisitsa, Semiclassical theory of the radiative-collisional cascade in a Rydberg atom. JETP 106, 635 (2008)

    Google Scholar 

  • A.B. Kukushkin, V.S. Lisitsa, Radiative cascades between Rydberg atomic states. Sov. Phys. JETP 61, 937 (1985)

    Google Scholar 

  • L.D. Landau, E.M. Lifschitz, The Classical Theory of Fields, 4th edn. (Butterworth-Heineman, Oxford, 2000)

    Google Scholar 

  • R. Lebert, A. Engel, W. Neff, Investigation on the transition between column and micropinch mode of plasma focus operation. J. Appl. Phys. 78, 6414 (1995)

    Google Scholar 

  • E.H. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22 (1977)

    Article  MathSciNet  Google Scholar 

  • S.J. Messenger, V. Strelnitski, On the 1.7 mm FeII and other natural lasers. Mon. Not. R. Astron. Soc 404, 1545 (2010)

    ADS  Google Scholar 

  • F. Petitdemange, F.B. Rosmej, Dielectronic satellites and Auger electron heating: irradiation of solids by intense XUV-free electron laser radiation, in New Trends in Atomic & Molecular Physics—Advanced Technological Applications, ed. by M. Mohan, vol. 76 (Springer, Heidelberg, 2013), pp. 91–114. ISBN 978-3-642-38166-9

    Google Scholar 

  • R.M. Pengelly, Recombination spectra—I. calculations for hydrogenic ions in the limit of low densities. Mon. Not. R. Astron. Soc 127, 145 (1964)

    Article  ADS  Google Scholar 

  • R. Piron, T. Blenski, Variational-average-atom-in-quantum-plasmas VAAQP code and virial theorem: equation-of-state and shock-Hugoniot calculations for warm dense Al. Fe, Cu, and Pb, Phys. Rev. E 83, 026403 (2011)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, Hot electron X-ray diagnostics, J. Phys. B. Lett. At. Mol. Opt. Phys. 30, L819 (1997)

    Google Scholar 

  • F.B. Rosmej, A new type of analytical model for complex radiation emission of hollow ions in fusion and laser produced plasmas. Europhys. Lett. 55, 472 (2001)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, An alternative method to determine atomic radiation. Europhys. Lett. 76, 1081 (2006)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas, in Highly Charged Ion Spectroscopic Research, ed. by Y. Zou, R. Hutton, (Taylor and Francis, Abingdon, UK 2012), pp. 267–341. ISBN: 9781420079043. http://www.crcnetbase.com/isbn/9781420079050

  • F.B. Rosmej, O.N. Rosmej, Transient formation of forbidden lines, J. Phys. B Lett. At. Mol. Opt. Phys. 29, L359 (1996)

    Google Scholar 

  • F.B. Rosmej, J. Abdallah Jr., Blue satellite structure near Heα and Heβ and redistribution of level populations. Phys. Lett. A 245, 548 (1998)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, V.S. Lisitsa, A self-consistent method for the determination of neutral density from X-ray impurity spectra. Phys. Lett. A 244, 401 (1998)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, A. Calisti, B. Talin, R. Stamm, D.H.H. Hoffmann, W. Süß, M. Geißel, A.Ya. Faenov, T.A. Pikuz, Observation of two-electron transitions in dense non-Maxwellian laser produced plasmas and their use as diagnostic reference lines. JQSRT 71, 639 (2001)

    Article  Google Scholar 

  • F.B. Rosmej, R. More, O.N. Rosmej, J. Wieser, N. Borisenko, V.P. Shevelko, M. Geißel, A. Blazevic, J. Jacoby, E. Dewald, M. Roth, E. Brambring, K. Weyrich, D.H.H. Hoffmann, A.A. Golubev, V. Turtikov, A. Fertman, BYu. Sharkov, A.Ya. Faenov, T.A. Pikuz, A.I. Magunov, IYu. Skobelev, Methods of charge state analysis of fast ions inside matter based on their X-ray spectral distribution. Laser Part. Beams 20, 479 (2002a)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, H.R. Griem, R.C. Elton, V.L. Jacobs, J.A. Cobble, A.Ya. Faenov, T.A. Pikuz, M. Geißel, D.H.H. Hoffmann, W. Süß, D.B. Uskov, V.P. Shevelko, R.C. Mancini, Investigation of charge exchange induced formation of two electron satellite transitions in dense laser produced plasmas. Phys. Rev. E 66, 056402 (2002b)

    Article  ADS  Google Scholar 

  • J.G. Rubiano, R. Florido, C. Bowen, R.W. Lee, Y. Ralchenko, Review of the 4th NLTE code comparison workshop. HEDP 3, 225 (2007)

    ADS  Google Scholar 

  • M.J. Seaton, The solution of capture-cascade equations for hydrogen. Mon. Not. R. Astron. Soc. 119, 90 (1959)

    Article  ADS  Google Scholar 

  • I.I. Sobelman, L.A. Vainshtein, Excitation of Atomic Spectra (Alpha Science International Ltd., Oxford, U.K., 2006)

    Google Scholar 

  • V.S. Strelnitski, V.O. Ponomarev, H.A. Smith, Hydrogen masers. I. Theory and prospects. Astrophys. J. 470, 1118 (1996)

    Google Scholar 

  • H.P. Summers, The recombination and level populations of ions—II; resolution of angular momentum states. Mon. Not. R. Astron. Soc. 178, 101 (1977)

    Article  ADS  Google Scholar 

  • N.C. Woolsey, B.A. Hammel, C.J. Keane, A. Asfaw, C.A. Back, J.C. Moreno, J.K. Nash, A. Calisti, C. Mossé, R. Stamm, B. Talin, L. Klein, R.W. Lee, Evolution of electron temperature and electron density in indirectly driven spherical implosions. Phys. Rev. E 56, 2314 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Rosmej .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosmej, F.B., Astapenko, V.A., Lisitsa, V.S. (2021). Atomic Population Kinetics. In: Plasma Atomic Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-05968-2_6

Download citation

Publish with us

Policies and ethics