Skip to main content

Physical Model-Based Prognostics and Health Monitoring to Enable Predictive Maintenance

  • Chapter
  • First Online:
Predictive Maintenance in Dynamic Systems

Abstract

This chapter addresses the development and application of predictive maintenance concepts for several types of assets, following two approaches: (1) detection and prediction of failures based on (real-time) monitoring the health or condition of the systems, and (2) prediction of failures (prognostics) using physical failure models and monitoring of loads or usage. Firstly, several challenges in the field of predictive maintenance are presented. These challenges will be addressed by the methods and tools discussed in the remainder of the chapter. Both the structural health monitoring methods and the prognostic concepts presented are based on a thorough understanding of the system and physical failure behaviour. After discussing the approaches for monitoring and prognostics, a series of decision support tools is presented. As a large number of methods and techniques are available, the selection of the most suitable method, as well as the critical parts in a system, is a challenging task. The presented tools assist in this selection process. Finally, the practical implementation of the presented approaches is discussed by showing a number of case studies in different sectors of industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tinga, T., Tiddens, W.W., Amoiralis, F., Politis, M.: Predictive maintenance of maritime systems. In: Cepin, M., Bris, R. (eds.) Proceedings of the 27th European Safety and Reliability Conference (ESREL). Safety & Reliability - Theory and Applications, pp. 421–429. Taylor & Francis, Abingdon (2017)

    Google Scholar 

  2. Tinga, T., Loendersloot, R.: Aligning PHM, SHM and CBM by understanding the system failure behaviour. In: Bregon, A., Daigle, M.J. (eds.) Proceedings of the European Conference of the Prognostics and Health Management Society, pp. 162–171. PHM society, Nantes, France (2014)

    Google Scholar 

  3. Homborg, A.M., Leon Morales, C.F., Tinga, T., de Wit, J.H.: Detection of microbiologically influenced corrosion by electrochemical noise transients. Electrochim. Acta 136, 223–232 (2014)

    Article  Google Scholar 

  4. Homborg, A.M., Tinga, T., van Westing, E., Zhang, X.: A critical appraisal of the interpretation of electrochemical noise for corrosion studies. Corrosion 70(10), 971–987 (2014)

    Article  Google Scholar 

  5. Homborg, A.M., van Westing, E., Tinga, T., Zhang, X.: Novel time-frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra. Corros. Sci. 66, 97–110 (2013)

    Article  Google Scholar 

  6. Sanchez Ramirez, A., Loendersloot, R., Jauregui Becker, J.M., Tinga, T.: Design framework for vibration monitoring systems for helicopter rotor blade monitoring using wireless sensor networks. In: Chang, F.K. (ed.) Proceedings of the 9th International Workshop on Structural Health Monitoring, Stanford, CA, U.S.A., pp. 1023–1030. DEStech publishing, Lancaster (2013)

    Google Scholar 

  7. Boller, C.: Structural health monitoring – its association and use. In: New Trends in Structural Health Monitoring. Springer, Vienna (2013). ISBN 978-3-7091-1389-9 (Print) 978-3-7091-1390-5 (online)

    Google Scholar 

  8. Cantero, D., O’Brien, E.J., Karoumi, R.: Extending the assessment dynamic ratio to railway bridges. In: Pombo, J. (ed.) Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance, 13pp. Civil-Comp Press, Stirlingshire (2014)

    Google Scholar 

  9. Seraj, F., van der Zwaag, B.J., Dilo, A., Luarasi, T., Havinga, P.J.M.: RoADS: a road pavement monitoring system for anomaly detection using smart phones. In: Big Data Analytics in the Social and Ubiquitous Context, pp. 128–146. Lecture Notes in Computer Science. Springer, Cham (2016)

    Google Scholar 

  10. Seraj, F., Meratnia, N., Havinga, P.J.M.: Rovi: continuous transport infrastructure monitoring framework for preventive maintenance. In: 2017 IEEE International Conference on Pervasive Computing and Communications, PerCom 2017, pp. 217–226. IEEE, Piscataway (2017)

    Google Scholar 

  11. Seraj, F.: Rolling vibes: continuous transport infrastructure monitoring. Ph.D. thesis, University of Twente (2017)

    Google Scholar 

  12. Blake, B.M., Kallol, D., Zand, P., Havinga, P.J.M.: Industrial wireless monitoring with energy-harvesting devices. IEEE Internet Comput. 21(1), 12–20 (2017)

    Article  Google Scholar 

  13. Güemes, J.A., Sierra-Pérez, J.: Fiber optics sensors. In: New Trends in Structural Health Monitoring. Springer, Vienna (2013). ISBN 978-3-7091-1389-9 (Print) 978-3-7091-1390-5 (online)

    Chapter  Google Scholar 

  14. Ooijevaar, T.H., Warnet, L., Loendersloot, R., Akkerman, R., de Boer, A.: Vibration based damage identification in a composite T-beam utilising low cost integrated actuators and sensors. In: Boller, C. (ed.) Proceedings of the Sixth European Workshop on Structural Health Monitoring, pp. 232–239. DGZfP e.V., Dresden (2012)

    Google Scholar 

  15. Schmidt, D., Kolbe, A., Kaps, R., Wierach, P., Linke, S., Steeger, S., von Dungern, F., Tauchner, J., Breu, C., Newman, B.: Development of a door surrounding structure with integrated structural health monitoring system. In: Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference, pp. 935–945. Springer, Cham, 2015

    Google Scholar 

  16. Hwang, J.S., Loendersloot, R., Tinga, T.: Experimental evaluation of vibration-based damage identification methods on a composite aircraft structure with internally-mounted piezodiaphragm sensors. In: Chang, F.K., Guemes, A. (eds.) Proceedings of International Workshop on Structural Health Monitoring, p. 8. DEStech Publications, Lancaster (2015)

    Google Scholar 

  17. Ooijevaar, T.H., Warnet, L., Loendersloot, R., Akkerman, R., Tinga, T.: Impact damage identification in composite skin-stiffener structures based on modal curvatures. Struct. Control. Health Monit. 23(2), 198–217 (2016)

    Article  Google Scholar 

  18. Ooijevaar, T.H., Rogge, M.D., Loendersloot, R., Warnet, L., Akkerman, R., Tinga, T.: Nonlinear dynamic behavior of an impact damaged composite skin-stiffener structure. J. Sound Vib. 353, 243–258 (2015)

    Article  Google Scholar 

  19. Ooijevaar, T.H., Rogge, M.D., Loendersloot, R., Warnet, L., Akkerman, R., Tinga, T.: Vibro-acoustic modulation–based damage identification in a composite skin–stiffener structure. Struct. Health Monit. 15(4), 458–472 (2016)

    Article  Google Scholar 

  20. Moix Bonet, M., Wierach, P., Loendersloot, R., Bach, M.: Damage assessment in composite structures based on acousto-ultrasonics - evaluation of performance. In: Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference, pp. 617–629. Springer, Cham (2015)

    Google Scholar 

  21. Loendersloot, R., Buethe, I., Michaelides, P., Moix Bonet, M., Lampeas, G.: Damage identification in composite panels - methodology and visualisation. In: Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference, pp. 579–604. Springer, Cham (2015)

    Google Scholar 

  22. Loendersloot, R., Moix Bonet, M.: Damage identification in composite panels using guided waves. In: Proceedings of the 5th CEAS Air & Space Conference, p. 14 (2015)

    Google Scholar 

  23. Venterink, M., Loendersloot, R., Tinga, T.: The detection of fatigue damage accumulation in a thick composite beam using acousto ultrasonics. In: Proceedings of the First HEAMES Conference, London, UK, p. 10 (2018)

    Google Scholar 

  24. Demcenko, A., Akkerman, R., Nagy, P.B., Loendersloot, R.: Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC. NDT & E Int. 49, 34–39 (2012)

    Article  Google Scholar 

  25. Hernandez Delgadillo, H., Loendersloot, R., Akkerman, R., Yntema, D.R.: Development of an inline water mains inspection technology: detection of acidic deterioration in cement-based water pipes with ultrasonic pulse-echo technique. In: Proceedings of 2016 IEEE International Ultrasonics Symposium (IUS), p. 4. IEEE International, Piscataway (2016)

    Google Scholar 

  26. Da Silva Souza, F., Oki, N., Filho, J.V., Loendersloot, R., Berkhoff, A.P.: Accuracy and multi domain piezoelectric power harvesting model using VHDL-AMS and SPICE. In: Proceedings of IEEE Sensors, p. 3. IEEE International, Piscataway (2016)

    Google Scholar 

  27. Gomez Casseres Espinosa, A.F., Sanchez Ramirez, A., Combita Alfonso, L.F., Loendersloot, R., Berkhoff, A.P.: Development of a piezoelectric based energy harvesting system for autonomous wireless sensor nodes. In: Le Cam, V., Mevel, L., Schoefs, F. (eds.) 7th European Workshop on Structural Health Monitoring, pp. 205–212 (2014)

    Google Scholar 

  28. Thobiani, F.A., Tran, V.T., Tinga, T.: An approach to fault diagnosis of rotating machinery using the second-order statistical features of thermal images and simplified fuzzy ARTMAP. Engineering 9(6), 524–539 (2017)

    Article  Google Scholar 

  29. Tran, V.T., Thobiani, F.A., Tinga, T., Ball, A.D., Niu, G.: Single and combined fault diagnosis of reciprocating compressor valves using a hybrid deep belief network. Proc. IME C. J. Mech. Eng. Sci. (2017). https://doi.org/10.1177/0954406217740929

    Google Scholar 

  30. Fassois, S.D., Kopsaftopoulos, F.P.: Statistical time series methods for vibration based structural health monitoring. In: New Trends in Structural Health Monitoring. Springer, Vienna (2013). ISBN 978-3-7091-1389-9 (Print) 978-3-7091-1390-5 (online)

    Chapter  Google Scholar 

  31. Ooijevaar, T.H.: Vibration based structural health monitoring of composite skin-stiffener structures. Ph.D. thesis, University of Twente (2014)

    Google Scholar 

  32. Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10, 83–111 (2011)

    Article  Google Scholar 

  33. Montalvao, D., Maia, N.M.M., Ribeiro, A.M.R.: A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Digest 38, 295–324 (2006)

    Article  Google Scholar 

  34. Carden, E.P., Fanning, P.: Vibration based condition monitoring: a review. Struct. Health Monit. 3(4), 355–377 (2004)

    Article  Google Scholar 

  35. Worden, K., Farrar, C.R., Manson, G., Park, G.: The fundamental axioms of structural health monitoring. Proc. R. Soc. 437, 1639–1664 (2007)

    Article  Google Scholar 

  36. Baaran, J.: Visual inspection of composite structures. Technical report, Institute of Composite Structures and Adaptive Systems, DLR Braunschweig (2009)

    Google Scholar 

  37. Derriso, M.M., DeSimio, M.P., McCurry, C.D., Schubert Kabban, C.M., Olson, S.O.: Industrial age non-destructive evaluation to information age structural health monitoring. Struct. Health Monit. 13(6), 591–600 (2014)

    Article  Google Scholar 

  38. Tinga, T.: Application of physical failure models to enable usage and load based maintenance. Reliab. Eng. Syst. Saf. 95(10), 1061–1075 (2010)

    Article  Google Scholar 

  39. Tinga, T.: Physical model based component prognostics. In: Maintenance Modelling and Applications, pp. 166–184. DNV Hovik (2011)

    Google Scholar 

  40. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D.: Prognostics and health management design for rotary machinery systems – reviews, methodology and applications. Mech. Syst. Signal Process. 42(1), 314–334 (2014)

    Article  Google Scholar 

  41. Khan, S., Yairi, T.: A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 107, 241–265 (2018)

    Article  Google Scholar 

  42. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)

    Article  Google Scholar 

  43. Farrar, C.R., Lieven, N.A.J.: Damage prognosis: the future of structural health monitoring. Phil. Trans. R. Soc. A 365, 623–632 (2006)

    Article  Google Scholar 

  44. Zio, E.: Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Saf. 94, 125–141 (2009)

    Article  Google Scholar 

  45. Tinga, T.: Predictive maintenance of military systems based on physical failure models. Chem. Eng. Trans. 33, 295–300 (2013)

    Google Scholar 

  46. Tinga, T.: Principles of Loads and Failure Mechanisms: Applications in Maintenance, Reliability and Design. Springer Series in Reliability Engineering. Springer, London (2013)

    Book  Google Scholar 

  47. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)

    Article  Google Scholar 

  48. Sayed-Mouchaweh, M.: Learning from Data Streams in Dynamic Environments. SpringerBriefs in Applied Sciences and Technology. Springer, New York (2016)

    Book  Google Scholar 

  49. Tiddens, W.W., Braaksma, A.J.J., Tinga, T.: Towards informed maintenance decision making: guiding the application of advanced maintenance analyses. In: Optimum Decision Making in Asset Management. IGI Global, Hershey (2017). https://doi.org/10.4018/978-1-5225-0651-5.ch013

  50. Tiddens, W.W., Braaksma, A.J.J., Tinga, T.: Framework for the selection of the optimal preventive maintenance approach. (to be submitted, 2018)

    Google Scholar 

  51. Mouatamir, A.: Decision support system for condition monitoring technologies. PDEng. thesis, University of Twente (2018)

    Book  Google Scholar 

  52. Tiddens, W.W., Braaksma, A.J.J., Tinga, T.: Selecting suitable candidates for predictive maintenance. Int. J. Prognostics Health Manag. 9(1), 020, 1–14 (2018)

    Google Scholar 

  53. Tinga, T.: Mechanism Based Failure Analysis. Improving Maintenance by Understanding the Failure Mechanisms. Netherlands Defence Academy, Den Helder (2012)

    Google Scholar 

  54. Karampelas, D.: FAME-X : failure mechanism identification expert system, in engineering technology. PDEng. thesis, University of Twente, Enschede, The Netherlands (2018)

    Google Scholar 

  55. Duplex, P.: Design of a life prediction tool for high-speed diesel engines, PDEng Thesis, University of Twente, Enschede (2018)

    Book  Google Scholar 

  56. Sichani, M.S.: On efficient modelling of wheel-rail contact in vehicle dynamics simulation. Ph.D. thesis, KTH Royal Institute of Technology (2016)

    Google Scholar 

  57. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications, vol. 2, 1st edn. Springer, Dordrecht (1990)

    Chapter  Google Scholar 

  58. Meghoe, A.A., Loendersloot, R., Bosman, R., Tinga, T.: Rail wear estimation for predictive maintenance: a strategic approach. In: Proceedings of the Prognostic Health Management Conference, p. 11. PHM Society, Utrecht, Netherlands (2018)

    Google Scholar 

  59. Jendel, T.: Prediction of wheel profile wear-comparisons with field measurements. Wear 253(1–2), 89–99 (2002)

    Article  Google Scholar 

  60. Wilkinson, M., Spinato, F., Knowles, M., Tavner, P.: Towards the zero maintenance wind turbine. In: Proceedings of Power Engineering Conference Newcastle, pp. 74–78 (2006)

    Google Scholar 

  61. Perez, J.M.P., Marquez, F.P.G., Tobias, A., Papaelias, M.: Wind turbine reliability analysis. Renew. Sust. Energ. Rev. 23, 463–472 (2013)

    Article  Google Scholar 

  62. Crabtree, C.: Operational and reliability analysis of offshore wind farms. Ph.D. thesis, School of Engineering and Computing Sciences (2012)

    Google Scholar 

  63. Breteler, D., Kaidis, C., Tinga, T., Loendersloot, R.: Physics based methodology for wind turbine failure detection, diagnostics & prognostics. In: Rosmi, A. (ed.) EWEA, p. 9 (2015)

    Google Scholar 

  64. Loendersloot, R., Venterink, M., Kruse, A., Lahuerta, F.: Acousto-ultrasonic damage monitoring in a thick composite beam for wind turbine applications. In Proceedings of the European Workshop on Structural Health Monitoring, pp. 1–12 , Manchester, UK (2018)

    Google Scholar 

  65. Lahuerta, F.: Identification of typical failures in composite rotor blades and structural health monitoring. Technical report TKI SLOWIND, Knowledge center WMC, Wieringerwerf, The Netherlands (2016)

    Google Scholar 

  66. Greve, D.W., Oppenheim, I.J., Zheng, P.: Lamb waves and nearly-longitudinal waves in thick plates. In: Proceedings of SPIE - The International Society for Optical Engineering (2008)

    Google Scholar 

  67. Giurgiutiu, V.: Structural Health Monitoring with Piezoelectric Waver Active Sensors. Elsevier, Columbia (2008)

    Google Scholar 

  68. Liu, X.L., Jiang, Z.W., Ji, L.: Investigation on the design of piezoelectric actuator/sensor for damage detection in beam with lamb waves. Exp. Mech. 53(3), 485–492 (2013)

    Article  Google Scholar 

  69. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C., Rose, J.L.: Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring. Smart Mater. Struct. 16(4), 1208–1217 (2007)

    Article  Google Scholar 

  70. Su, Z., Ye, L., Lu, Y.: Guided lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295(3–5), 753–780 (2006)

    Article  Google Scholar 

  71. Su, Z., Ye, L.: Identification of Damage Using Lamb Waves – From Fundamentals to Applications. Lecture Notes in Applied and Computational Mechanics, vol. 48. Springer, London (2009)

    Chapter  Google Scholar 

  72. Wu, Z., Liu, K., Wang, Y., Zheng, Y.: Validation and evaluation of damage identification using probability-based diagnostic imaging on a stiffened composite panel. J. Intell. Mater. Syst. Struct. 26(16), 2181–2195 (2014)

    Article  Google Scholar 

  73. Moix Bonet, M., Eckstein, B., Loendersloot, R., Wierach, P.: Identification of barely visible impact damages on a stiffened composite panel with a probability-based approach. In: Chang, F.K., Guemes, A. (eds.) Proceedings of International Workshop on Structural Health Monitoring, p. 8. DEStech Publications, Lancaster (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiedo Tinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tinga, T., Loendersloot, R. (2019). Physical Model-Based Prognostics and Health Monitoring to Enable Predictive Maintenance. In: Lughofer, E., Sayed-Mouchaweh, M. (eds) Predictive Maintenance in Dynamic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-05645-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05645-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05644-5

  • Online ISBN: 978-3-030-05645-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics