Skip to main content

Francis Turbine Analysis Between Computational Fluid Dynamics (CFD) and Experimental Methods

  • Chapter
  • First Online:
Advanced Engineering for Processes and Technologies

Abstract

Hydroelectric power has become the most promising source in the power sector to sustain the growth of any nation. In any hydroelectric power plant, the hydraulic turbine plays a vital role which affects the overall performance of the plant and if utilized at suboptimal level, may lead to the loss of useful head. So, it becomes vital to predict the behavior of the hydro-turbine under actual working conditions. Francis turbines are the most well-known water turbines being used today. The Francis turbines works in water depths from 10 to 650 m (33–2133 ft) and are fundamentally utilized for electric power generation. This research consists of a simulation process and experimental research in order to compare both of the results. The geometry is modelled using the CATIA software and transferred into Ansys for the analysis. All the main parts that are included in the Francis turbine educational kit at the Universiti Kuala Lumpur Malaysian Spanish Institute such as the spiral casing, the runner blade, guide vane and the draft tube is constructed in the 3D model. The highest accuracy for the Francis turbine occurs at 1300 RPM and the highest inaccuracy percentage is within 30% and the lowest inaccuracy percentage is within 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Future of Hydropower in Malaysia, pp. 32–33 (May, 2005)

    Google Scholar 

  2. Drtina, P., Sallaberger, M.: Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications. 213, 85–103 (1999)

    Google Scholar 

  3. Jain, S., Saini, R.P., Kumar, A.: CFD approach for prediction of efficiency of francis turbine, pp. 1–7 (2010)

    Google Scholar 

  4. Francis, J.B., Service, N.P.: Lowell Notes (1848)

    Google Scholar 

  5. Akin, H., Aytac, Z., Ayancik, F., Ozkaya, E., Arioz, E., Celebioglu, K., Aradag, S.: A CFD aided hydraulic turbine design methodology applied to Francis turbines

    Google Scholar 

  6. Navthar, R.R., Tejas, J., Saurabh, D., Nitish, D., Anand, A.: CFD analysis of Francis turbine. 4(07), 3194–3199

    Google Scholar 

  7. Čarija, Z., Mrša, Z.: Validation of Francis water turbine CFD simulations. 50(1), 5–14 (2008)

    Google Scholar 

  8. Shukla, M.K.: CFD analysis of 3-D flow for Francis turbine. 1(2), 93–100 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universiti Kuala Lumpur Malaysian Spanish Institute for the financial support for this research work via Final Year Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairul Shahril bin Shaffee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

bin Md. Kamal, M.N., bin Shaffee, K.S., bin Mohamad Sidik, M.S., Ab. Kadir, A.R., bin Mahmood, J.I. (2019). Francis Turbine Analysis Between Computational Fluid Dynamics (CFD) and Experimental Methods. In: Ismail, A., Abu Bakar, M., Öchsner, A. (eds) Advanced Engineering for Processes and Technologies. Advanced Structured Materials, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-05621-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05621-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05620-9

  • Online ISBN: 978-3-030-05621-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics