Skip to main content

Ecotoxicological Effects of Nanomaterials on Growth, Metabolism, and Toxicity of Nonvascular Plants

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

We now have diverse types of nanomaterials (NMs) comprising of inorganic particles (e.g., oxides, metals, and salts existing in nature or produced in the laboratory) or organic particles (e.g., polymer-clay nanocomposites and quantum dots that may be manufactured only in the laboratory), ranging in dimensions between 1 and 100 nm. Their unique physicochemical properties are determined by their shape, size, surface area, and charge. Because of the widespread application of NMs in various fields, an intentional or unintended release of nanomaterials into the environment is on the increase, while their adverse effects on biological systems are difficult to predict. This situation necessitates the assessment of the potential effects of NMs on the exposed organisms and ecological processes. This chapter summarizes the latest research findings regarding the impact of NMs on the growth, metabolism, and toxicity of nonvascular plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnan Y, Séjalon-Delmas N, Claustres A, Probst A (2015) Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Sci Total Environ 529:285–296

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Khan I, Khan S, Sohail M, Ahmed R, Rehman A, Ansari MS, Morsy MA (2017) Electrocatalytic performance of Ni@Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J Electroanal Chem 795:17–25

    Article  CAS  Google Scholar 

  • Amelia M, Lincheneau C, Silvi S, Credi A (2012) Electrochemical properties of CdSe and CdTe quantum dots. Chem Soc Rev 41:5728–5743

    Article  CAS  PubMed  Google Scholar 

  • Aqel A, El-Nour K, Ammar R, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Geosci 5:1–23

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier H, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädlerb L, Kahrua A (2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 2:630–644

    Article  CAS  Google Scholar 

  • Astefanei A, Núñez O, Galceran M (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21

    Article  CAS  PubMed  Google Scholar 

  • ASTM/E2456-06 (2012) Standard terminology relating to nanotechnology. American Society for Testing and Materials, West Conshohocken Retrieved from www.astm.org

    Google Scholar 

  • Baun A, Sørensen S, Rasmussen R, Hartmann N, Koch C (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387

    Article  CAS  PubMed  Google Scholar 

  • Behra R, Wagner B, Sgier L, Kistler D (2015) Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii. Aquat Geochem 21:331–342

    Article  CAS  Google Scholar 

  • Bianco A, Da Ros T (2011) Biological applications of fullerenes. In: Langa F, Nierengarten J (eds) Fullerenes: principles and applications, 2nd edn. RSC Publishing, Cambridge, pp 507–545

    Chapter  Google Scholar 

  • Blaise C, Gagné F, Férard J, Eullaffroy P (2008) Ecotoxicity of selected nanomaterials to aquatic organisms. Environ Toxicol 23:591–598

    Article  CAS  PubMed  Google Scholar 

  • Bradley E, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610

    Article  CAS  Google Scholar 

  • Canivet L, Dubot P, Denayer F (2014) Uptake of iron nanoparticles by Aphanorrhegma patens (Hedw.) Lindb. J Bryol 36:104–109

    Article  Google Scholar 

  • Canivet L, Dubot P, Garçon G, Denayer F (2015) Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure. Ecotoxicol Environ Saf 113:499–505

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari P, Masurkar S, Shidore V, Kamble S (2012) Effect of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett 4:34–39

    Article  Google Scholar 

  • Chen P, Powell B, Mortimer M, Ke P (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol 46:12178–12185

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Hu X, Yin D, Wang R (2016) Effect of subcellular distribution on nC60 uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna. Ecotoxicol Environ Saf 128:213–221

    Article  CAS  PubMed  Google Scholar 

  • Chow W, Jahnke F (2013) On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 37:109–184

    Article  Google Scholar 

  • Colvin V (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Dalai S, Pakrashi S, Nirmala M, Chaudhri A, Chandrasekaran N, Mandal A, Mukherjee A (2013) Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquat Toxicol 138:139: 1–139:11

    Google Scholar 

  • Dash A, Singh A, Chaudhary B, Singh S, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett 4:158–165

    Article  CAS  Google Scholar 

  • De Clerck O, Bogaert K, Leliaert F (2012) Diversity and evolution of algae: primary endosymbiosis. Adv Bot Res 64:55–86

    Article  Google Scholar 

  • De Volder M, Tawfick S, Baughman R, Hart A (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  PubMed  CAS  Google Scholar 

  • Deerinck T (2008) The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol 36:112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado C, Sørensen S, Engelbrekt C, Baun A (2013) Toxicity of platinum nanoparticles to freshwater algae and crustaceans. In: SETAC North America 34th annual meeting, Nashville

    Google Scholar 

  • Domingos R, Simon D, Hauser C, Wilkinson K (2011) Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii—nanoparticles or the free ions? Environ Sci Technol 45:7664–7669

    Article  CAS  PubMed  Google Scholar 

  • Dreaden E, Alkilany A, Huang X, Murphy C, El-Sayed M (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  PubMed  Google Scholar 

  • Duong T, Le T, Huong Tran T, Nguyen T, Ho C, Dao T, Quynh Le T, Nguyen H, Dang D, Huong Le T, Ha P (2016) Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria. Adv Nat Sci Nanosci Nanotechnol 7:035018

    Article  CAS  Google Scholar 

  • Dybiec M, Chomokur G, Ostapenko S, Wolcott A, Zhang J, Zajac A, Phelan C, Sellers T, Gerion G (2007) Photoluminescence spectroscopy of bioconjugated CdSe/ZnS quantum dots. Appl Phys Lett 90:263112

    Article  CAS  Google Scholar 

  • Dymytrova L (2009) Epiphytic lichens and bryophytes as indicators of air pollution in Kyiv city (Ukraine). Folia Cryptogam Est 46:33–44

    Google Scholar 

  • Eddy A, Galloway D, John D, Tittley I (1992) Lower plant diversity. In: Groombridge B (ed) Global biodiversity. Springer, Dordrecht, pp 55–57

    Chapter  Google Scholar 

  • Elliott J, Shibuta Y, Amara H, Bichara C, Neyts E (2013) Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale 5:6662–6676

    Article  CAS  PubMed  Google Scholar 

  • Faburé J, Meyer C, Denayer F, Gaudry A, Gilbert D, Bernard N (2010) Accumulation capacities of particulate matter in an acrocarpous and a pleurocarpous moss exposed at three differently polluted sites (industrial, urban and rural). Water Air Soil Pollut 212:205–217

    Article  CAS  Google Scholar 

  • Franklin N, Rogers N, Apte S, Batley G, Gadd G, Casey P (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  PubMed  Google Scholar 

  • García-Cambero J, García M, Díaz López G, López Herranz A, Cuevas L, Pérez-Pastrana E, Sendra Cuadal J, Ramis Castelltort M, Castaño Calvo A (2013) Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere 93:1194–1200

    Article  PubMed  CAS  Google Scholar 

  • Garrec J, Van Haluwyn C (2002) Biosurveillance végétale de la qualité de l'air. Tech & Doc, Lavoisier, Paris

    Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini M, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:471–482

    Article  CAS  Google Scholar 

  • Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516

    Article  CAS  PubMed  Google Scholar 

  • Gosteva I, Morgalev Y, Morgaleva T, Morgalev S (2015) Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms. In: IOP conference series: materials science and engineering, vol 98. Curran Associates, Inc., Tambov, p 012007

    Google Scholar 

  • Griffitt R, Luo J, Gao J, Bonzongo J, Barber D (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmens H, Norris D, Cooper D, Mills G, Steinnes E, Kubin E, Thöni L, Aboal J, Alber R, Carballeira A, CoÅŸkun M, De Temmerman L, Frolova M, González-Miqueo L, Jeran Z, Leblond S, Liiv S, Zechmeister H (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 59:2852–2860

    Article  CAS  Google Scholar 

  • Hartmann N, von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S (2010) Algal testing of titanium dioxide nanoparticles – testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197

    Article  CAS  PubMed  Google Scholar 

  • Hartmann N, Engelbrekt C, Zhang J, Ulstrup J, Kusk K, Baun A (2013) The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology 7:1082–1094

    Article  CAS  PubMed  Google Scholar 

  • He D, Dorantes-Aranda J, Waite T (2012) Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environ Sci Technol 46:8731–8738

    Article  CAS  PubMed  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • Ibrahim K (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14:131–144

    Article  Google Scholar 

  • Iswarya V, Johnson J, Parashar A, Pulimi M, Chandrasekaran N, Mukherjee A (2017) Modulatory effects of Zn2+ ions on the toxicity of citrate- and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus. Environ Sci Pollut Res Int 24:3790–3801

    Article  CAS  PubMed  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White D (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Sung W, Suh B, Moon S, Choi J, Kim J, Lee D (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  CAS  PubMed  Google Scholar 

  • Książyk M, Asztemborska M, StÄ™borowski R, Bystrzejewska-Piotrowska G (2015) Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bull Environ Contam Toxicol 94:554–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulacki K, Cardinale B (2012) Effects of nano-titanium dioxide on freshwater algal population dynamics. PLoS One 7:e47130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, van der Elst L, Muller R (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Fortin C, Campbell P (2005) Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Aquat Toxicol 75:127–135

    Article  CAS  PubMed  Google Scholar 

  • Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xiao R, Liu Z, Liang X, Feng W (2017) Cytotoxicity of NiO nanoparticles and its conversion inside Chlorella vulgaris. Chem Res Chin Univ 33:107–111

    Article  CAS  Google Scholar 

  • Lin S, Bhattacharya P, Rajapakse N, Brune D, Ke P (2009) Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966

    Article  CAS  Google Scholar 

  • Lodenius M (2013) Use of plants for biomonitoring of air borne mercury in contaminated areas. Environ Res 125:113–123

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity towards algae. Environ Sci Technol 46:8458–8466

    Article  CAS  PubMed  Google Scholar 

  • Luo J (2007) Toxicity and bioaccumulation of nanomaterial in aquatic species. J US SJWP 2:1–16

    Google Scholar 

  • Ma S, Lin D (2013) The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Processes Impacts 15:145–160

    Article  CAS  Google Scholar 

  • Manier N, Le Manach S, Bado-Nilles A, Pandard P (2016) Effect of two TiO2 nanoparticles on the growth of unicellular green algae using the OECD 201 test guideline: influence of the exposure system. Toxicol Environ Chem 98:860–876

    Article  CAS  Google Scholar 

  • Manusadžianas L, Caillet C, Fachetti L, Gylyte B, Grigutyte R, Jurkoniene S, Karitonas R, Sadauskas K, Thomas F, Vitkus R, Ferard J (2012) Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ Toxicol Chem 31:108–114

    Article  PubMed  CAS  Google Scholar 

  • Melo A, Amadeu M, Lancellotti M, de Hollanda LM, Machado D (2015) The role of nanomaterials in cosmetics: national and international legislative aspects. Quim Nova 38:599–603

    CAS  Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684

    Article  CAS  PubMed  Google Scholar 

  • Meyer C, Gilbert D, Gaudry A, Franchi M, Nguyen-Viet H, Fabure J, Bernard N (2010) Relationship of atmospheric pollution characterized by gas (NO2) and particles (PM10) to microbial communities living in bryophytes at three differently polluted sites (rural, urban, and industrial). Microb Ecol 59:324–334

    Article  CAS  PubMed  Google Scholar 

  • Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli E, Cioni P, Posarelli M, Gabellieri E (2012) Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquat Toxicol 122–123:153–162

    Article  PubMed  CAS  Google Scholar 

  • Morgalev Y, Morgaleva T, Gosteva I, Morgalev S, Kulizhskiy S, Astafurova T (2015) Effect of zinc oxide nanoparticles on the test function of water organisms of different trophic levels. In: IOP conference series: materials science and engineering, vol 98. Curran Associates, Inc., Tambov, p 012005

    Google Scholar 

  • Müller E, Behra R, Sigg L (2015) Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtii. Environ Chem 13:457–463

    Article  CAS  Google Scholar 

  • Namasivayam S, Gnanendra K, Reepika R (2010) Synthesis of silver nanoparticles by Lactobacillus acidophilus 01 strain and evaluation of its in vitro genomic DNA toxicity. Nano-Micro Lett 2:160–163

    Article  Google Scholar 

  • Oishi Y (2013) Comparison of pine needles and mosses as bio-indicators for polycyclic aromatic hydrocarbons. J Environ Prot 4:106–113

    Article  CAS  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, Barhoumi L, Samadani M, Dewez D (2015) Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L. Biomed Res Int 2015:501326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oukarroum A, Zaidi W, Samadani M, Dewez D (2017) Toxicity of nickel oxide nanoparticles on a freshwater green algal strain of Chlorella vulgaris. Biomed Res Int 2017:9528180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pádrová K, Lukavský J, Nedbalová L, ÄŒejková A, Cajthaml T, Sigler K, Vítová M, Řezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27:1443–1451

    Article  CAS  Google Scholar 

  • Pereira M, Mouton L, Yéprémian C, Couté A, Lo J, Marconcini J, Ladeira LO, Raposo N, Brandão H, Brayner R (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12:15

    Article  CAS  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382

    Article  CAS  PubMed  Google Scholar 

  • Pimratcha S, Butsat S, Kesmala T (2015) Application of blue-green algae and mineral fertilizers. ScienceAsia 41:305–314

    Article  Google Scholar 

  • Quigg A, Chin W, Chen C, Zhang S, Jiang Y, Miao A (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustain Chem Eng 1:686–702

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Reiners R (2013) Definition and standardization of nanomaterials. In: Wolfgang Luther AZ (ed) Safety aspects of engineered nanomaterials. Pan Stanford Publishing Pte. Ltd, Singapore, pp 1–27

    Google Scholar 

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126

    Article  CAS  Google Scholar 

  • Röhder L, Brandt T, Sigg L, Behra R (2014) Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol 152:121–130

    Article  PubMed  CAS  Google Scholar 

  • Roldan Cuenya B (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150

    Article  CAS  Google Scholar 

  • Roy R, Parashar A, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species. Aquat Toxicol 176:161–171

    Article  CAS  PubMed  Google Scholar 

  • Sadiq I, Dalai S, Chandrasekaran N, Mukherjee A (2011a) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187

    Article  CAS  PubMed  Google Scholar 

  • Sadiq I, Pakrashi S, Chandrasekaran N, Mukherjee A (2011b) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299

    Article  CAS  Google Scholar 

  • Saison C, Perreault F, Daigle J, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Dominguez M, Boutonnet M, Solans C (2009) A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method. J Nanopart Res 11:1823

    Article  CAS  Google Scholar 

  • Schröder W, Holy M, Pesch R, Harmens H, Fagerli H, Alber R, CoÅŸkun M, De Temmerman L, Frolova M, González-Miqueo L, Jeran Z, Kubin E, Leblond S, Liiv S, Maňkovská B, Piispanen J, Santamaría H, Simonèièn P, Suchara I, Yurukova L, Thöni L, Zechmeister H (2010) First europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses. Atmos Environ 44:3485–3491

    Article  CAS  Google Scholar 

  • Schwab F, Bucheli T, Lukhele L, Magrez A, Nowack B (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 4:6136–6144

    Article  CAS  Google Scholar 

  • Service R (2008) Report faults U.S. strategy for nanotoxicology research. Science 322:1779

    CAS  PubMed  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Singh S, Singh G, Ramachandrarao P, Dash D (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Singh N (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15:185–191

    Article  CAS  Google Scholar 

  • Sohn E, Chung Y, Johari S, Kim T, Kim J, Lee J, Lee Y, Kang S, Yu I (2015) Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed Res Int 2015:323090

    PubMed  PubMed Central  Google Scholar 

  • Sørensen S, Engelbrekt C, Lützhøft H, Jiménez-Lamana J, Noori J, Alatraktchi F, Delgado C, Slaveykova V, Baun A (2016) A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environ Sci Technol Lett 50:10635–10643

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Stankic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol 14:73

    Article  CAS  Google Scholar 

  • Tao X, Yu Y, Fortner J, He Y, Chen Y, Hughes J (2015) Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. Chemosphere 122:162–167

    Article  CAS  PubMed  Google Scholar 

  • Taylor C, Matzke M, Kroll A, Read D, Svendsen C, Crossley A (2016a) Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environ Sci Nano 3:396–408

    Article  CAS  Google Scholar 

  • Taylor N, Merrifield R, Williams T, Chipman J, Lead J, Viant M (2016b) Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 10:32–41

    CAS  PubMed  Google Scholar 

  • Thakkar M, Mitra S, Wei L (2016) Effect on growth, photosynthesis, and oxidative stress of single walled carbon nanotubes exposure to marine alga Dunaliella tertiolecta. J Nanomater 2016:8380491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unrine J, Colman B, Bone A, Gondikas A, Matson C (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of ag nanoparticles. Part 1. Aggregation and dissolution. Environ Sci Technol 46:6915–6924

    Article  CAS  PubMed  Google Scholar 

  • Van Hoecke K, De Schamphelaere K, Van Der Meeren P, Lucas S, Janssen C (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem 27:1948–1957

    Article  PubMed  Google Scholar 

  • Van Hoecke K, De Schamphelaere K, Ali Z, Zhang F, Elsaesser A, Rivera-Gil P, Parak W, Smagghe G, Howard C, Janssen C (2013) Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 7:37–47

    Article  PubMed  CAS  Google Scholar 

  • Vance M, Kuiken T, Vejerano E, McGinnis S, Hochella M, Rejeski D, Hull M (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuković G, UroÅ¡ević M, Goryainova Z, Pergal M, Å krivanj S, Samson R, Popović A (2015) Active moss biomonitoring for extensive screening of urban air pollution: magnetic and chemical analyses. Sci Total Environ 521–522:200–210

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yang K (2013) Toxicity of single-walled carbon nanotubes on green microalga Chromochloris zofingiensis. Chin J Oceanol Limnol 31:306–311

    Article  CAS  Google Scholar 

  • Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Miao A, Luo J, Wei Z, Zhu J, Yang L (2013) Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica: a kinetics study. Environ Sci Technol 47:10601–10610

    Article  CAS  PubMed  Google Scholar 

  • Warheit D, Hoke R, Finlay C, Donner E, Reed K, Sayes C (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010a) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160

    Article  CAS  Google Scholar 

  • Wei L, Thakkar M, Chen Y, Ntim S, Mitra S, Zhang X (2010b) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201

    Article  CAS  PubMed  Google Scholar 

  • Worms I, Boltzman J, Garcia M, Slaveykova V (2012) Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525–533

    Article  CAS  PubMed  Google Scholar 

  • Xiao A, Wang C, Chen J, Guo R, Yan Z, Chen J (2016) Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicol Environ Saf 133:211–217

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Jiang Y, Chen C, Creeley D, Schwehr K, Quigg A, Chin W, Santschi P (2013) Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. Aquat Toxicol 126:214–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lei C, Chen J, Yang K, Zhu L, Lin D (2015) Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon 83:198–207

    Article  CAS  Google Scholar 

  • Zhou J, Yang Y, Zhang C (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mavrikou, S., Kintzios, S. (2019). Ecotoxicological Effects of Nanomaterials on Growth, Metabolism, and Toxicity of Nonvascular Plants. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_16

Download citation

Publish with us

Policies and ethics