Skip to main content

The Woronin Body: A Fungal Organelle Regulating Multicellularity

  • Chapter
  • First Online:
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

In filamentous fungal species belonging to the Phyla Ascomycota and Basidiomycota, hyphae are compartmentalized into distinct cells by the formation of a septum. However, the septum does not completely separate hyphae due to the presence of a septal pore, which is a perforated structure that allows the exchange of the cytoplasmic constituents between adjacent hyphal cells. Cell-to-cell connectivity through the septal pore is associated with the catastrophic risk of cytoplasmic loss by cells adjacent to individually damaged hyphae. Pezizomycotina (filamentous Ascomycota) species have evolved to possess a specialized organelle called the Woronin body around the septum. The primary function of Woronin bodies is the prevention of excessive cytoplasmic loss from cells adjacent to damaged or lysed cells. Hex1, a major structural protein of Woronin bodies, is conserved in Pezizomycotina species. Woronin bodies differentiate from the peroxisomes and are typically tethered to the septum. Recent studies have identified additional septum-related components such as proteins containing intrinsically disordered regions and those involved in hyphal fusion/sexual reproduction and mitosis, which further elucidates molecular machineries governing the septal pore closure besides Woronin bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asiegbu FO, Choi W, Jeong JS, Dean RA (2004) Cloning, sequencing and functional analysis of Magnaporthe grisea MVP1 gene, a hex-1 homolog encoding a putative “Woronin body” protein. FEMS Microbiol Lett 230:85–90

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Ebel F (2013) Characterization of the major Woronin body protein HexA of the human pathogenic mold Aspergillus fumigatus. Int J Med Microbiol 303:90–97

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Echtenacher B, Ebel F (2013) Woronin bodies, their impact on stress resistance and virulence of the pathogenic mould Aspergillus fumigatus and their anchoring at the septal pore of filamentous Ascomycota. Mol Microbiol 89:857–871

    Article  CAS  PubMed  Google Scholar 

  • Berns MW, Aist JR, Wright WH, Liang H (1992) Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp Cell Res 198:375–378

    Article  CAS  PubMed  Google Scholar 

  • Bleichrodt RJ, van Veluw GJ, Recter B, Maruyama J, Kitamoto K, Wösten HA (2012) Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol Microbiol 86:1334–1344

    Article  CAS  PubMed  Google Scholar 

  • Bleichrodt RJ, Hulsman M, Wösten HA, Reinders MJ (2015) Switching from a unicellular to multicellular organization in an Aspergillus niger hypha. MBio 6:e00111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowman JC, Scott Hicks P, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, Douglas CM (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46:3001–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buller AHR (1933) The translocation of protoplasm through septate mycelium of certain Pyrenomycetes, Discomycetes and Hymenomycetes. In: Researches on fungi, vol 5. Longmans, Green & Co, London, pp 75–167

    Google Scholar 

  • Camp RR (1977) Association of microbodies, Woronin bodies, and septa in intercellular hyphae of Cymadothea trifolii. Can J Bot 55:1856–1859

    Article  Google Scholar 

  • Curach NC, Te'o VS, Gibbs MD, Bergquist PL, Nevalainen KM (2004) Isolation, characterization and expression of the hex1 gene from Trichoderma reesei. Gene 331:133–140

    Article  CAS  PubMed  Google Scholar 

  • Edgerton-Morgan H, Oakley BR (2012) gamma-Tubulin plays a key role in inactivating APC/C(Cdh1) at the G(1)-S boundary. J Cell Biol 198:785–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engh I, Würtz C, Witzel-Schlömp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kück U (2007) The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell 6:831–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escaño CS, Juvvadi PR, Jin FJ, Takahashi T, Koyama Y, Yamashita S, Maruyama J, Kitamoto K (2009) Disruption of the Aopex11-1 gene involved in peroxisome proliferation leads to impaired Woronin body formation in Aspergillus oryzae. Eukaryot Cell 8:296–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiddy C, Trinci AP (1976) Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol 97:169–184

    Article  CAS  PubMed  Google Scholar 

  • Fleißner A, Glass NL (2007) SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell 6:84–94

    Article  PubMed  CAS  Google Scholar 

  • Fleißner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL (2005) The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4:920–930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han P, Jin FJ, Maruyama J, Kitamoto K (2014) A large nonconserved region of the tethering protein Leashin is involved in regulating the position, movement, and function of Woronin bodies in Aspergillus oryzae. Eukaryot Cell 13:866–877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jedd G (2011) Fungal evo-devo: organelles and multicellular complexity. Trends Cell Biol 21:12–19

    Article  CAS  PubMed  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    Article  CAS  PubMed  Google Scholar 

  • Jedd G, Pieuchot L (2012) Multiple modes for gatekeeping at fungal cell-to-cell channels. Mol Microbiol 86:1291–1294

    Article  CAS  PubMed  Google Scholar 

  • Juvvadi PR, Maruyama J, Kitamoto K (2007) Phosphorylation of the Aspergillus oryzae Woronin body protein, AoHex1, by protein kinase C: evidence for its role in the multimerization and proper localization of the Woronin body protein. Biochem J 405:533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller GA, Krisans S, Gould SJ, Sommer JM, Wang CC, Schliebs W, Kunau W, Brody S, Subramani S (1991) Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J Cell Biol 114:893–904

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Hung LW, Yokota H, Kim R, Kim SH (1998) Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. Proc Natl Acad Sci USA 95:10419–10424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Willger SD, Park SW, Puttikamonkul S, Grahl N, Cho Y, Mukhopadhyay B, Cramer RA Jr, Lawrence CB (2009) TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog 5:e1000653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubo Y, Fujihara N, Harata K, Neumann U, Robin GP, O'Connell R (2015) Colletotrichum orbiculare FAM1 encodes a novel Woronin body-associated Pex22 peroxin required for appressorium-mediated plant infection. MBio 6:e01305–e01315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai J, Koh CH, Tjota M, Pieuchot L, Raman V, Chandrababu KB, Yang D, Wong L, Jedd G (2012) Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity. Proc Natl Acad Sci USA 109:15781–15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonhardt Y, Kakoschke SC, Wagener J, Ebel F (2017) Lah is a transmembrane protein and requires Spa10 for stable positioning of Woronin bodies at the septal pore of Aspergillus fumigatus. Sci Rep 7:44179

    Article  PubMed  PubMed Central  Google Scholar 

  • Lew RR (2005) Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiology 151:2685–2692

    Article  CAS  PubMed  Google Scholar 

  • Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP, Fernandez JM (2001) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci USA 98:10682–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang J, Zhang Z, Wang Y, Liu M, Jiang H, Chai R, Mao X, Qiu H, Liu F, Sun G (2014) MoPex19, which is essential for maintenance of peroxisomal structure and Woronin bodies, is required for metabolism and development in the rice blast fungus. PLoS One 9:e85252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichius A, Yáñez-Gutiérrez ME, Read ND, Castro-Longoria E (2012) Comparative live-cell imaging analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa reveal novel features of the filamentous fungal polarisome. PLoS One 7:e30372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Ng SK, Lu Y, Low W, Lai J, Jedd G (2008) Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. J Cell Biol 180:325–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G (2011) Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev Cell 21:457–468

    Article  CAS  PubMed  Google Scholar 

  • Managadze D, Würtz C, Sichting M, Niehaus G, Veenhuis M, Rottensteiner H (2007) The peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies. Traffic 8:687–701

    Article  CAS  PubMed  Google Scholar 

  • Markham P (1994) Occlusions of septal pores in filamentous fungi. Mycol Res 98:1089–1106

    Article  Google Scholar 

  • Markham P, Collinge AJ (1987) Woronin bodies of filamentous fungi. FEMS Microbiol Rev 46:1–11

    Article  Google Scholar 

  • Maruyama J, Kitamoto K (2007) Differential distribution of the endoplasmic reticulum network in filamentous fungi. FEMS Microbiol Lett 272:1–7

    Article  CAS  PubMed  Google Scholar 

  • Maruyama J, Juvvadi PR, Ishi K, Kitamoto K (2005) Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 331:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Maruyama J, Kikuchi S, Kitamoto K (2006) Differential distribution of the endoplasmic reticulum network as visualized by the BipA-EGFP fusion protein in hyphal compartments across the septum of the filamentous fungus, Aspergillus oryzae. Fungal Genet Biol 43:642–654

    Article  CAS  PubMed  Google Scholar 

  • Maruyama J, Escaño CS, Kitamoto K (2010) AoSO protein accumulates at the septal pore in response to various stresses in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 391:868–873

    Article  CAS  PubMed  Google Scholar 

  • Mason PJ, Crosse R (1975) Crystalline inclusions in hyphae of the glaucus group of Aspergilli. Trans Br Mycol Soc 65:129–134

    Article  Google Scholar 

  • McKeen WE (1971) Woronin bodies in Erysiphe graminis DC. Can J Microbiol 17:1557–1560

    Article  CAS  PubMed  Google Scholar 

  • Momany M, Richardson EA, Van Sickle C, Jedd G (2002) Mapping Woronin body position in Aspergillus nidulans. Mycologia 94:260–266

    Article  PubMed  Google Scholar 

  • Müller WH, Montijn RC, Humbel BM, van Aelst AC, Boon EJ, van der Krift TP, Boekhout T (1998) Structural differences between two types of basidiomycete septal pore caps. Microbiology 144:1721–1730

    Article  PubMed  Google Scholar 

  • Nave R, Fürst DO, Weber K (1989) Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol 109:2177–2187

    Article  CAS  PubMed  Google Scholar 

  • Nayak T, Edgerton-Morgan H, Horio T, Xiong Y, De Souza CP, Osmani SA, Oakley BR (2010) Gamma-tubulin regulates the anaphase-promoting complex/cyclosome during interphase. J Cell Biol 190:317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng SK, Liu F, Lai J, Low W, Jedd G (2009) A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet 5:e1000521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584

    Article  CAS  PubMed  Google Scholar 

  • Peat TS, Newman J, Waldo GS, Berendzen J, Terwilliger TC (1998) Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 A resolution. Structure 6:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Plamann M (2009) Cytoplasmic streaming in Neurospora: disperse the plug to increase the flow? PLoS Genet 5:e1000526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan FJ, Beadle GW, Tatum EL (1943) The tube method of measuring the growth rate of Neurospora. Am J Bot 30:784–799

    Article  Google Scholar 

  • Shen KF, Osmani AH, Govindaraghavan M, Osmani SA (2014) Mitotic regulation of fungal cell-to-cell connectivity through septal pores involves the NIMA kinase. Mol Biol Cell 25:763–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Son M, Lee KM, Yu J, Kang M, Park JM, Kwon SJ, Kim KH (2013) The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1. J Virol 87:10356–10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soundararajan S, Jedd G, Li X, Ramos-Pamploña M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 6:1564–1574

    Article  Google Scholar 

  • Steinberg G, Schuster M, Hacker C, Kilaru S, Correia A (2017a) ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus Zymoseptoria tritici. Cell Microbiol 19:e12764

    Article  PubMed Central  CAS  Google Scholar 

  • Steinberg G, Harmer NJ, Schuster M, Kilaru S (2017b) Woronin body-based sealing of septal pores. Fungal Genet Biol 109:53–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegelaar M, Wösten HAB (2017) Functional distinction of hyphal compartments. Sci Rep 7:6039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teichert I, Steffens EK, Schnaß N, Fränzel B, Krisp C, Wolters DA, Kück U (2014) PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C. PLoS Genet 10:e1004582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31:205–217

    Article  CAS  PubMed  Google Scholar 

  • Tey WK, North AJ, Reyes JL, Lu YF, Jedd G (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16:2651–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinci APJ, Collinge AJ (1974) Occlusion of the septal pores of damaged hyphae of Neurospora crassa by hexagonal crystals. Protoplasma 80:57–67

    Article  CAS  PubMed  Google Scholar 

  • Wergin WP (1973) Development of Woronin bodies from microbodies in Fusarium oxysporum f. sp. lycopersici. Protoplasma 76:249–260

    Article  CAS  PubMed  Google Scholar 

  • Woronin M (1864) Zur Entwicklungsgeschichte der Ascobolus pulcherrimus Cr und eigiger Pezizen. Abh Senkenb Naturforsch Ges 5:333–344

    Google Scholar 

  • Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würtz C, Schliebs W, Erdmann R, Rottensteiner H (2008) Dynamin-like protein-dependent formation of Woronin bodies in Saccharomyces cerevisiae upon heterologous expression of a single protein. FEBS J 275:2932–2941

    Article  PubMed  CAS  Google Scholar 

  • Yuan P, Jedd G, Kumaran D, Swaminathan S, Shio H, Hewitt D, Chua NH, Swaminathan K (2003) A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Biol (4):264–270

    Google Scholar 

  • Zekert N, Veith D, Fischer R (2010) Interaction of the Aspergillus nidulans microtubule-organizing center (MTOC) component ApsB with gamma-tubulin and evidence for a role of a subclass of peroxisomes in the formation of septal MTOCs. Eukaryot Cell 9:795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Kitamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maruyama, Ji., Kitamoto, K. (2019). The Woronin Body: A Fungal Organelle Regulating Multicellularity. In: Hoffmeister, D., Gressler, M. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-05448-9_1

Download citation

Publish with us

Policies and ethics