Skip to main content

Slice_OP: Selecting Initial Cluster Centers Using Observation Points

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11323))

Included in the following conference series:

Abstract

This paper proposes a new algorithm, Slice_OP, which selects the initial cluster centers on high-dimensional data. A set of observation points is allocated to transform the high-dimensional data into one-dimensional distance data. Multiple Gamma models are built on distance data, which are fitted with the expectation-maximization algorithm. The best-fitted model is selected with the second-order Akaike information criterion. We estimate the candidate initial centers from the objects in each component of the best-fitted model. A cluster tree is built based on the distance matrix of candidate initial centers and the cluster tree is divided into K branches. Objects in each branch are analyzed with k-nearest neighbor algorithm to select initial cluster centers. The experimental results show that the Slice_OP algorithm outperformed the state-of-the-art Kmeans++ algorithm and random center initialization in the k-means algorithm on synthetic and real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcalafdez, J., Fernandez, A., Luengo, J., Derrac, J., Garcia, S.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Soft Comput. 17, 255–287 (2011)

    Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Symposium on Discrete Algorithms (SODA), pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  3. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49(3), 803–821 (1993)

    Article  MathSciNet  Google Scholar 

  4. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In: Proceedings of 15th International Conference on Machine Learning, pp. 91–99. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  5. Deelers, S., Auwatanamongkol, S.: Enhancing k-means algorithm with initial cluster centers derived from data partitioning along the data axis with the highest variance. Int. J. Phys. Math. Sci. 1(11), 518–523 (2007)

    Google Scholar 

  6. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  7. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  8. Erisoglu, M., Calis, N., Sakallioglu, S.: A new algorithm for initial cluster centers in k-means algorithm. Pattern Recogn. Lett. 32, 1701–1705 (2011)

    Article  Google Scholar 

  9. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  10. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)

    Article  MathSciNet  Google Scholar 

  11. Fraley, C., Raftery, A.E.: Bayesian regularization for normal mixture estimation and model-based clustering. J. Classif. 24(2), 155–181 (2007)

    Article  MathSciNet  Google Scholar 

  12. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  13. Khan, S.S., Ahmad, A.: Cluster center initialization algorithm for k-means clustering. Pattern Recogn. Lett. 25(11), 1293–1302 (2004)

    Article  Google Scholar 

  14. Kuncheva, L.I., Hadjitodorov, S.: Using diversity in cluster ensembles. In: International Conference on System, Man and Cybernetics, vol. 2, pp. 1214–1219 (2004)

    Google Scholar 

  15. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  16. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge, New York (2008). http://opac.inria.fr/record=b1127339

    Book  Google Scholar 

  17. Masud, M.A., Huang, J.Z., Wei, C., Wang, J., Khan, I., Zhong, M.: I-nice: a new approach for identifying the number of clusters and initial cluster centres. Inf. Sci. 466, 129–151 (2018)

    Article  Google Scholar 

  18. Sbhatia, M.P., Khurana, D.: Analysis of initial centers for k-means clustering algorithm. Int. J. Comput. Appl. 71(5), 9–12 (2013)

    Google Scholar 

  19. Sugiura, N.: Further analysis of the data by Akaike’ s information criterion and the finite corrections. Commun. Stat.-Theory Methods 7(1), 13–26 (1978)

    Article  Google Scholar 

  20. Tzortzis, G., Likas, A.: The minmax k-means clustering algorithm. Pattern Recogn. 47(7), 2505–2516 (2014)

    Article  Google Scholar 

  21. Vegas-Sáchez-Ferrero, G., et al.: Gamma mixture classifier for plaque detection in intravascular ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(1), 44–61 (2014)

    Article  Google Scholar 

  22. Ye, Y., Huang, J.Z., Chen, X., Zhou, S., Williams, G., Xu, X.: Neighborhood density method for selecting initial cluster centers in k-means clustering. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 189–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_23

    Chapter  Google Scholar 

Download references

Acknowledgment

This paper was supported by National Natural Science Foundations of China (under Grant No. 61473194 and 61472258) and Shenzhen-Hong Kong Technology Cooperation Foundation (under Grant No. SGLH20161209101100926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Abdul Masud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masud, M.A., Huang, J.Z., Zhong, M., Fu, X., Mahmud, M.S. (2018). Slice_OP: Selecting Initial Cluster Centers Using Observation Points. In: Gan, G., Li, B., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2018. Lecture Notes in Computer Science(), vol 11323. Springer, Cham. https://doi.org/10.1007/978-3-030-05090-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05090-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05089-4

  • Online ISBN: 978-3-030-05090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics