Skip to main content

Circadian and Seasonal Timing of Insect Olfactory Systems

  • Chapter
  • First Online:
Olfactory Concepts of Insect Control - Alternative to insecticides
  • 685 Accesses

Abstract

Insects are exposed to cyclic environmental changes caused by regular geophysical events. To cope with physical and biological changes, insects set their activities at an appropriate time of the day and of the year, causing daily rhythm and seasonal rhythm. Using photoperiod and temperature insects adjust their development and reproduction to favorable seasons, and overcome unfavorable ones to enter diapause. During active seasons insect behavior or activity is timed in a fixed period of a day by the circadian clock. Both photoperiodism and daily rhythms employ circadian clock mechanisms. For efficient insect control, consideration of biological timing system is important to determine timing for application of controlling agents or appropriate treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anton S, Dufour MC, Gadenne C (2007) Plasticity of olfactory-guided behaviour and its neurobiological basis: lessons from moths and locusts. Entomol Exp Appl 123:1–11

    Google Scholar 

  • Beck SD (1980) Insect photoperiodism, 2nd edn. Academic, New York, p 387

    Google Scholar 

  • Bell RA, Rasul CG, Joachim FG (1975) Photoperiodic induction of the pupal diapause in the tobacco hornworm, Manduca sexta. J Insect Physiol 21:1471–1480

    Article  Google Scholar 

  • Brown MR, Sieglaff DH, Rees HH (2009) Gonadal ecdysteroidogenesis in Arthropoda: occurrence and regulation. Annu Rev Entomol 54:105–125

    Article  CAS  Google Scholar 

  • Chapman JW, Lim KA, Reynolds DR (2013) The significance of midsummer movements of Autographa gamma: implications for a mechanistic understanding of orientation behavior in a migrant moth. Curr Zool 59:360–370

    Article  Google Scholar 

  • Colvin J, Gatehouse G (1993) Migration and genetic regulation of the prereproductive period in the cotton-bollworm moth, Helicoverpa armigera. Heredity 70:407–412

    Article  Google Scholar 

  • Cusson M, McNeil JN (1989) Involvement of juvenile hormone in the regulation of pheromone release activities in a moth. Science 243:210–212

    Article  CAS  Google Scholar 

  • DeCoursey PJ, Krulas JR, Mele G, Holley DC (1997) Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav 62:1099–1108

    Article  CAS  Google Scholar 

  • DeCoursey PJ, Walker JK, Smith SA (2000) A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol A 186:169–180

    Article  CAS  Google Scholar 

  • Delisle J, McNeil JN (1986) The effect of photoperiod on the calling behaviour of virgin females of the true armyworm, Pseudaletia unipuncta (haw.) (lepidoptera: noctuidae). J Insect Physiol 32:199–206

    Article  Google Scholar 

  • Delisle J, McNeil JN (1987) The combined effect of photoperiod and temperature on the calling behaviour of the true armyworm, Pseudaletia unipunct. Physiol Entomol 12:157–164

    Article  Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    Article  CAS  Google Scholar 

  • Denlinger DL, Yocum GD, Rinehart JP (2012) Hormonal control of diapause. In: Gilbert LI (ed) Insect endocrinology. Elsevier BV Academic Press, Waltham, pp 430–463

    Chapter  Google Scholar 

  • Dolezel D (2014) Photoperiodic time measurement in insects. Curr Opin Insect Sci 7:1–6

    Google Scholar 

  • Endo N, Wada T, Sasaki R (2011) Seasonal synchrony between pheromone trap catches of the bean bug, Riptortus pedestris (Heteroptera: Alydidae) and the timing of invasion of soybean fields. Appl Entomol Zool 46:477–482

    Article  Google Scholar 

  • Fukuda S (1940) Determination of the voltinism in the silkworm with special reference to the pigment formation in the serosa of the egg. Zool Mag 52:415–429

    Google Scholar 

  • Gadenne C (1993) Effects of fenoxycarb, juvenile hormone mimetic, on female sexual behavior of the black cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae). J Insect Physiol 39:721–724

    Article  Google Scholar 

  • Gadenne C, Renou M, Sreng L (1993) Hormonal control of pheromone responsiveness in the male black cutworm Agrotis ipsilon. Experientia 49:721–724

    Article  CAS  Google Scholar 

  • Gatehouse AG, Zhang XX (1995) Migratory potential of insects: variation in an uncertain environment. In: Drake VA, Gatehouse AG (eds) Insect migration: tracking resource in space and time. Cambridge University Press, Cambridge, pp 193–242

    Chapter  Google Scholar 

  • Gemeno C, Haynes KF (2001) Impact of photoperiod on the sexual behavior of the black cutworm moth (Lepidoptera: Noctuidae). Environ Entomol 30:189–195

    Article  Google Scholar 

  • Goehring L, Oberhauser L (2002) Effects of photoperiod, temperature, and host plant ager on induction of reproductive diapause and development time in Danaus plexippus. Ecol Entomol 27:674–685

    Article  Google Scholar 

  • Goto SG (2013) Roles of circadian clock genes in insect photoperiodism. Entomol Sci 16:1–16

    Article  Google Scholar 

  • Greiner B, Gadenne C, Anton S (2002) Central processing of plant volatiles in Agrotis ipsilon males is age independent in contrast to sex pheromone processing. Chem Senses 27:45–48

    Article  CAS  Google Scholar 

  • Groot AT (2014) Circadian rhythms of sexual activities in moths: a review. Front Ecol Evol 2:43

    Article  Google Scholar 

  • Gruwez G, Hoste C, Lints CV, Lints FA (1971) Oviposition rhythms in Drosophila melanogaster and its alteration by a change in the photoperiodicity. Experientia 27:1414–1416

    Article  CAS  Google Scholar 

  • Han EN, Gatehouse G (1991) Effects of temperature and photoperiod on the calling behavior of a migratory insect, the oriental armyworm Mythimna separata. Physiol Entomol 16:419–427

    Article  Google Scholar 

  • Hardeland R (1972) Species differences in the diurnal rhythmicity of courtship behavior within the melanogaster group of the genus Drosophila. Anim Behav 20:170–174

    Article  CAS  Google Scholar 

  • Helfrich-Förster C (2003) The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc Res Tech 62(2):94–102

    Google Scholar 

  • Ichinose T (1974) Pupal diapause in some Japanese papilionid butterflies, with special reference to the difference in photoperiodic response between the diapausing pupae of Papilio maakii tutanus Fenton and P. xuthus Linnaeus. Kontyu 42:439–450

    Google Scholar 

  • Ikeno T, Tanaka SI, Numata H, Goto SG (2010) Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol 8:116

    Article  Google Scholar 

  • Johnson CG (1963) Physiological factors in insect migration by flight. Nature 198:423–427

    Article  Google Scholar 

  • Kawasaki Y, Nishimura H, Shiga S (2017) Plausible link between circa‘bi’dian activity rhythms and circadian clock systems in the large black chafer Holotrichia parallela. J Exp Biol 220:4024–4034

    Article  Google Scholar 

  • Kennedy JS (1961) A turning point in the study of insect migration. Nature 189:785–791

    Article  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116

    Article  CAS  Google Scholar 

  • Krishnan B, Dryer SE, Hardin PE (1999) Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400:375–378

    Article  CAS  Google Scholar 

  • Leal WS, Sawada M, Matsuyama S, Kuwahara Y, Hasegawa M (1993) Unusual periodicity of sex pheromone production in the large black chafer Holotrichia parallela. J Chem Ecol 19:1381–1391

    Article  CAS  Google Scholar 

  • Leal WS, Higuchi H, Mizutani N, Nakamori H, Kadosawa T, Ono M (1995) Multifunctional communication in Riptortus clavatus (Heteroptera: Alydidae): conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue. J Chem Ecol 21:973–985

    Article  CAS  Google Scholar 

  • Li GB, Wang HX, Hu WX (1964) Route of the seasonal migration of the oriental armyworm moth in the eastern part of China as indicated by a three-year result of releasing and recapturing of marked moths. Act Phytophyl Sin 3:101–110

    Google Scholar 

  • McNeil JN (1986) Calling behavior: can it be used to identify migratory species of moths? Fla Entomol 69:78–84

    Article  Google Scholar 

  • McNeil JN, Delisle J, Cusson M (1997) Regulation of pheromone production in Lepidoptera: the need for an ecological perspective. In: Cardé RT, Minks AD (eds) Insect pheromone research. Springer, Boston, pp 31–41

    Chapter  Google Scholar 

  • Menon A, Varma V, Sharma VK (2014) Rhythmic egg-laying behaviour in virgin females of fruit flies Drosophila melanogaster. Chronobiol Int 31:433–441

    Article  Google Scholar 

  • Merlin C, Lucas P, Rochat D, François MC, Maïbèche-Coisne M, Jacquin-Joly E (2007) An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J Biol Rhythm 22:502–514

    Article  CAS  Google Scholar 

  • Mizutani N, Yasuda T, Yamaguchi T, Moriya S (2008) Pheromone contents and physiological conditions of adult bean bugs, Riptortus pedestris (Heteroptera: Alydidae), attracted to conspecific males during nondiapause and diapause periods in fields. Appl Entomol Zool 43:331–339

    Article  CAS  Google Scholar 

  • Nishiitsutsuji-Uwo J, Pittendrigh CS (1968) Central nervous system control of circadian rhythmicity in the cockroach. III. The optic lobes, locus of the driving oscillation? Zeitsch Verg Physiol 58:14–46

    Article  Google Scholar 

  • Page TL (1982) Transplantation of the cockroach circadian pacemaker. Science 216:73–75

    Article  CAS  Google Scholar 

  • Page TL, Koelling E (2003) Circadian rhythm in olfactory response in the antennae controlled by the optic lobe in the cockroach. J Insect Physiol 49:697–707

    Article  CAS  Google Scholar 

  • Pavelka J, Shimada K, Kostal V (2003) Timeless: a link between fly’s circadian and photoperiodic clocks? Eur J Entomol 100:255–265

    Article  CAS  Google Scholar 

  • Perez SM, Taylor OR (2004) Monarch butterflies’ (Danaus plexippus) migratory behavior persists despite changes in environmental conditions. In: Oberhauser KS, Solensky M (eds) Monarch butterflies: ecology and population biology. Cornell University Press, Ithaca, pp 85–88

    Google Scholar 

  • Picimbon JF, Bécard JM, Sreng L, Clément JL, Gadenne C (1995) Juvenile hormone stimulates pheromonotropic brain factor release in the female black cutworm, Agrotis ipsilon. J Insect Physiol 41:377–382

    Article  CAS  Google Scholar 

  • Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    Article  CAS  Google Scholar 

  • Rabb RL (1966) Diapause in Protoparce sexta (Lepidoptera: Sphingidae). Ann Entomol Soc Am 59:160–165

    Article  Google Scholar 

  • Rahman MM, Lim UT (2016) Females of Riptortus pedestris (Hemiptera: Alydidae) in reproductive diapause are more responsive to synthetic aggregation pheromone. J Econ Entomol 109:2082–2089

    Article  Google Scholar 

  • Rosén WQ, Han GB, Löfstedt C (2003) The circadian rhythm of the sex-pheromone-mediated behavioral response in the turnip moth, Agrotis segetum, is not controlled at the peripheral level. J Biol Rhythm 18:402–408

    Article  Google Scholar 

  • Roth LM, Barth RH (1967) The sense organs employed by cockroaches in mating behavior. Behaviour 28:58–93

    Article  Google Scholar 

  • Rymer J, Bauernfeind AL, Brown S, Page TL (2007) Circadian rhythms in the mating behavior of the cockroach, Leucophaea maderae. J Biol Rhythm 22:43–57

    Article  Google Scholar 

  • Saifullah ASM, Page TL (2009) Circadian regulation of olfactory receptor neurons in the cockroach antenna. J Biol Rhythm 24:144–152

    Article  CAS  Google Scholar 

  • Sakai T, Ishida N (2001) Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc Natl Acad Sci U S A 98:9221–9225

    Article  CAS  Google Scholar 

  • Sakamoto T, Uryu O, Tomioka K (2009) The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J Biol Rhythm 24:379–390

    Article  CAS  Google Scholar 

  • Sandrelli F, Costa R, Kyriacou CP, Rosato E (2008) Comparative analysis of circadian clock genes in insects. Insect Mol Biol 17:447–463

    Article  CAS  Google Scholar 

  • Saunders DS (2002) Insect clocks, 3rd edn. Elsevier Science, Amsterdam, p 576

    Google Scholar 

  • Saunders DS (2009) Photoperiodism in insects: migration and diapause responses. In: Nelson RJ, Denlinger DL, Somers DE (eds) Photoperiodism: the biological calendar. Oxford University Press, Oxford, pp 218–257

    Chapter  Google Scholar 

  • Schöfl G, Dill A, Heckel DG, Groot AT (2011) Allochronic separation versus mate choice: nonrandom patterns of mating between fall armyworm host strains. Am Nat 177:470–485

    Article  Google Scholar 

  • Shiga S, Numata H (2009) Roles of PERIOD immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. J Exp Biol 212:867–877

    Article  Google Scholar 

  • Showers WB (1997) Migratory ecology of the black cutworm. Annu Rev Entomol 42:393–425

    Article  CAS  Google Scholar 

  • Silvegren G, Löfstedt C, Rosén WQ (2005) Circadian mating activity and effect of pheromone pre-exposure on pheromone response rhythms in the moth Spodoptera littoralis. J Insect Physiol 51:277–286

    Article  CAS  Google Scholar 

  • Somers J, Harper REF, Albert JT (2018) How many clocks, how many times? On the sensory basis and computational challenges of circadian systems. Front Behav Neurosci 12:211

    Article  Google Scholar 

  • Sreng L (1993) Cockroach mating behaviors, sex pheromones, and abdominal glands (Dictyoptera: Blaberidae). J Insect Behav 6:715–735

    Article  Google Scholar 

  • Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE (2004) Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol 14:638–649

    Article  CAS  Google Scholar 

  • Tanoue S, Krishnan P, Chatterjee A, Hardin PE (2008) G protein-coupled receptor kinase 2 is required for rhythmic olfactory responses in Drosophila. Curr Biol 18:787–794

    Article  CAS  Google Scholar 

  • Tomioka K, Chiba Y (1982) Persistence of circadian ERG rhythm in the cricket with optic tract severed. Naturwissenschaften 69:395–396

    Article  Google Scholar 

  • Tomioka K, Chiba Y (1984) Effects of nymphal stage optic nerve severance or optic lobe removal on the circadian locomotor rhythm of the cricket, Gryllus bimaculatus. Zool Sci 1:375–382

    Google Scholar 

  • Tomioka K, Matsumoto A (2015) Circadian molecular clockworks in non-model insects. Curr Opin Insect Sci 7:58–64

    Article  Google Scholar 

  • Turgeon J, McNeil JN (1982) Calling behavior of the armyworm, Pseudaletia unipuncta. Entomol Exp Appl 31:402–408

    Article  Google Scholar 

  • Urquhart FA, Urquhart NR (1978) Autumnal migration routes of eastern population of monarch butterfly (Danaus p plexippus L., Danaidae; Lepidoptera) in North America to overwintering site in Neovolcanic Plateau of Mexico. Can J Zool 56:1759–1764

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York, p 794

    Google Scholar 

  • Williams CB, Cockbill GF, Gibbs MA, Downes JA (1942) Studies in the migration of Lepidoptera. Trans R Ent Soc Lond 92:101–174

    Article  Google Scholar 

  • Xia QW, Chen C, Tu XY, Yang HZ, Xue FS (2012) Inheritance of photoperiodic induction of larval diapause in the Asian corn borer Ostrinia furnacalis. Physiol Entomol 37:185–191

    Article  Google Scholar 

  • Yasuda T, Mizutani N, Endo N, Fukuda T, Matsuyama R, Ito K, Moriya S, Sasaki R (2007a) A new component of attractive aggregation pheromone in the bean bug, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae). Appl Entomol Zool 42:1–7

    Article  CAS  Google Scholar 

  • Yasuda T, Mizutani N, Honda Y, Endo N, Yamaguchi T, Moriya S, Fukuda T, Sasaki R (2007b) A supplemental component of aggregation attractant pheromone in the bean bug Riptortus clavatus (Thunberg), related to food exploitation. Appl Entomol Zool 42:161–166

    Article  CAS  Google Scholar 

  • Yoshioka K, Yamasaki Y (1984) Biology of Lachnosterna morosa Waterhouse and damages on taro. Jap J Appl Entomol Zool 38:5–8

    Google Scholar 

  • Zhao XC, Feng HQ, Wu B, Wu XF, Liu ZF, Wu KM, McNeil JN (2009) Does the onset of sexual maturation terminate the expression of migratory behavior in moths? A study of the oriental armyworm, Mythimna separata. J Insect Physiol 55:1039–1043

    Article  CAS  Google Scholar 

  • Zhu H, Gegear RJ, Casselman A, Kanginakudru S, Reppert SM (2009) Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol 7:14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakiko Shiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiga, S. (2019). Circadian and Seasonal Timing of Insect Olfactory Systems. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05060-3_7

Download citation

Publish with us

Policies and ethics