Skip to main content

Survey of the Deformation Quantization of Commutative Families

  • Conference paper
  • First Online:
Recent Developments in Integrable Systems and Related Topics of Mathematical Physics (MP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 273))

Included in the following conference series:

Abstract

In this survey chapter we discuss various approaches and known results, concerning the following question: when is it possible to find a commutative extension of a Poisson-commutative subalgebra in \(C^\infty (X)\) (where X is a Poisson manifold) to a commutative subalgebra in the deformation quantization of X, the algebra \(\mathscr {A}(X)\). A case of particular interest, which we consider with certain detail is the situation, when \(X=\mathfrak g^*\) and the commutative subalgebra is constructed by the argument shift method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc. Math. J. 7(2), 209–218 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Talalaev, D.: The quantum Gaudin system. Funct. Anal. Appl. 40(1), 73–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vinberg, E.: On certain commutative subalgebras of a universal enveloping algebra. MATH. USSR-IZV 36(1), 1–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tarasov, A.: On some commutative subalgebras of the universal enveloping algebra of the Lie algebra \(\mathfrak{gl}(n,\mathbb{C})\). Sb. Math. 191(9), 1375–1382 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Rybnikov, L.: The argument shift method and the Gaudin model. Funct. Anal. Appl. 40(3), 188–199 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Molev, A.: Feigin–Frenkel center in types \(B, C\) and \(D\). Invent. Math. 191(1), 1–34 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Manakov, S.: Note on the integration of Euler’s equations of the dynamics of an \(n\)-dimensional rigid body. Funct. Anal. Appl. 10(4), 328–329 (1976)

    MATH  Google Scholar 

  9. Mishchenko, A., Fomenko, A.: Euler equations on finite-dimensional Lie groups. MATH. USSR-IZV 12(2), 371–389 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kosmann-Schwarzbach, Y., Magri, F.: Lax-Nijenhuis operators for integrable systems. J. Math. Phys. 37(12), 6173–6197 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cahen, M., Gutt, S., De Wilde, M.: Local cohomology of the algebra of smooth functions on a connected manifold. Lett. Math. Phys. 4, 157–167 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calaque, D., van den Bergh, M.: Hochschild cohomology and Atiyah classes. Adv. Math. 224(5), 1839–1889 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garay, M., van Straten, D.: Classical and quantum integrability. Mosc. Math. J. 10(3), 519–545 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Sharygin, G., Talalaev, D.: Deformation quantization of integrable systems. J. Noncommut. Geom. 11(2), 741–756 (2017). arXiv:1210.2840

    Article  MathSciNet  MATH  Google Scholar 

  15. Sharygin, G.: Deformation quantization and the action of Poisson vector fields. Lobachevskii J. Math. 38(6), 1093–1107 (2017). arXiv:1612.02673

    Article  MathSciNet  MATH  Google Scholar 

  16. Kosmann-Schwarzbach, Y.: Derived brackets. Lett. Math. Phys. 69(1), 61–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gutt, S.: An explicit \(\ast \)-product on the Cotangent Bundle of a Lie group. Lett. Math. Phys. 7(3), 249–258 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Fedosov, B.: Index theorems. Partial differential equations–8, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. 65, 165–268. VINITI, Moscow (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sharygin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharygin, G., Konyaev, A. (2018). Survey of the Deformation Quantization of Commutative Families. In: Buchstaber, V., Konstantinou-Rizos, S., Mikhailov, A. (eds) Recent Developments in Integrable Systems and Related Topics of Mathematical Physics. MP 2016. Springer Proceedings in Mathematics & Statistics, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-030-04807-5_8

Download citation

Publish with us

Policies and ethics