Skip to main content

Numerical Instability of the Akhmediev Breather and a Finite-Gap Model of It

  • Conference paper
  • First Online:
Recent Developments in Integrable Systems and Related Topics of Mathematical Physics (MP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 273))

Included in the following conference series:

Abstract

The focusing Nonlinear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, considered the main physical mechanism for the appearance of rogue (anomalous) waves (RWs) in Nature. In this paper we study the numerical instabilities of the Akhmediev breather, the simplest space periodic, one-mode perturbation of the unstable background, limiting our considerations to the simplest case of one unstable mode. In agreement with recent theoretical findings of the authors, in the situation in which the round-off errors are negligible with respect to the perturbations due to the discrete scheme used in the numerical experiments, the split-step Fourier method (SSFM), the numerical output is well-described by a suitable genus 2 finite-gap solution of NLS. This solution can be written in terms of different elementary functions in different time regions and, ultimately, it shows an exact recurrence of rogue waves described, at each appearance, by the Akhmediev breather. We discover a remarkable empirical formula connecting the recurrence time with the number of time steps used in the SSFM and, via our recent theoretical findings, we establish that the SSFM opens up a vertical unstable gap whose length can be computed with high accuracy, and is proportional to the inverse of the square of the number of time steps used in the SSFM. This neat picture essentially changes when the round-off error is sufficiently large. Indeed experiments in standard double precision show serious instabilities in both the periods and phases of the recurrence. In contrast with it, as predicted by the theory, replacing the exact Akhmediev Cauchy datum by its first harmonic approximation, we only slightly modify the numerical output. Let us also remark, that the first rogue wave appearance is completely stable in all experiments and is in perfect agreement with the Akhmediev formula and with the theoretical prediction in terms of the Cauchy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The authors are very grateful to M. Sommacal for introducing us to this method and providing us with his personalized MatLab code.

References

  1. Ablowitz, M., Herbst, B.: On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM J. Appl. Math. 339–351 (1990)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Schober, C.M., Herbst, B.M.: Numerical chaos, roundoff errors and homoclinic manifolds. Phys. Rev. Lett. 71, 2683 (1993)

    Article  Google Scholar 

  3. Ablowitz, M.J., Hammack, J., Henderson, D., Schober, C.M.: Long-time dynamics of the modulational instability of deep water waves. Physica D 152153, 416–433 (2001)

    Article  MathSciNet  Google Scholar 

  4. Akhmediev, N.N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys 69(2), 1089–1093 (1986)

    Article  Google Scholar 

  5. Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: Generation of periodic sequence of picosecond pulses in an optical fibre: exact solutions. J. Exp. Theor. Phys. 61, 894–899 (1985)

    Google Scholar 

  6. Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: Exact first order solutions of the Nonlinear Schödinger equation. Theor. Math. Phys. 72(2), 809–818 (1987)

    Article  Google Scholar 

  7. Akhmediev, N.N.: Nonlinear physics: Déjà vu in optics. Nature (London) 413, 267–268 (2001)

    Article  Google Scholar 

  8. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego, USA (2001). ISBN 0-12-045143-3

    Google Scholar 

  9. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109(4), 44102 (2012)

    Article  Google Scholar 

  10. Belokolos, E.D., Bobenko, A.I., Enolski, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric Approach in the Theory of Integrable Equations. Springer Series in Nonlinear Dynamics. Springer, Berlin (1994)

    Google Scholar 

  11. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. Part I Theory. J. Fluid Mech. 27(3), 417–430 (1967)

    Article  Google Scholar 

  12. Biondini, G., Kovacic, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

    Article  MathSciNet  Google Scholar 

  13. Biondini, G., Li, S., Mantzavinos, D.: Oscillation structure of localized perturbations in modulationally unstable media. Phys. Rev. E 94, 060201(R) (2016)

    Article  Google Scholar 

  14. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Article  Google Scholar 

  15. Bortolozzo, U., Montina, A., Arecchi, F.T., Huignard, J.P., Residori, S.: Spatiotemporal pulses in a liquid crystal optical oscillator. Phys. Rev. Lett. 99(2), 3–6 (2007)

    Article  Google Scholar 

  16. Calini, A., Ercolani, N.M., McLaughlin, D.W., Schober, C.M.: Mel’nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation. Physica D 89, 227–260 (1996)

    Article  MathSciNet  Google Scholar 

  17. Calini, A., Schober, C.M.: Homoclinic chaos increases the likelihood of rogue wave formation. Phys. Lett. A 298(5–6), 335–349 (2002)

    Article  MathSciNet  Google Scholar 

  18. Calini, A., Schober, C.M.: Dynamical criteria for rogue waves in nonlinear Schrödinger models. Nonlinearity 25, R99–R116 (2012)

    Article  Google Scholar 

  19. Degasperis, A., Lombardo, S.: Integrability in action: solitons, instability and rogue waves. In: Onorato M., Resitori S., Baronio F. (eds.) Rogue and Shock Waves in Nonlinear Dispersive Media. Lecture Notes in Physics. http://www.springer.com/us/book/9783319392127 (2016)

    Chapter  Google Scholar 

  20. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)

    Article  Google Scholar 

  21. Dysthe, K.B., Trulsen, K.: Note on breather type solutions of the NLS as models for freak-waves. Physica Scripta. T82, 48–52 (1999)

    Article  Google Scholar 

  22. http://www.fftw.org

  23. Grinevich, P.G., Santini, P.M.: The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1. Nonlinearity, 31(11), 5258–5308 (2018)

    Article  MathSciNet  Google Scholar 

  24. Grinevich, P.G., Santini, P.M.: The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes. Physics Letters A. 382, 973–979 (2018)

    Article  MathSciNet  Google Scholar 

  25. Grinevich P.G., Santini P.M.: The finite gap method and the periodic NLS Cauchy problem of the anomalous waves, for a finite number of unstable modes. arXiv:1810.09247 (2018)

  26. Henderson, K.L., Peregrine, D.H., Dold, J.W.: Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equtation. Wave Motion 29, 341–361 (1999)

    Article  MathSciNet  Google Scholar 

  27. Hirota, R.: Direct Methods for Finding Exact Solutions of Nonlinear Evolution Equations. Lecture Notes in Mathematics, vol. 515. Springer, New York (1976)

    Chapter  Google Scholar 

  28. Its, A.R., Kotljarov, V.P.: Explicit formulas for solutions of a nonlinear Schrödinger equation. Dokl. Akad. Nauk Ukrain. SSR Ser. A 1051:965–968 (1976)

    Google Scholar 

  29. Its, A.R., Rybin, A.V., Sall, M.A.: Exact integration of nonlinear Schrödinger equation. Theor. Math. Phys. 74, 20–32 (1988)

    Article  Google Scholar 

  30. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rew. E 85, 066601 (2012)

    Article  Google Scholar 

  31. Kharif C. and Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/ Fluids J. Mech. 22, 603–634 (2004)

    Article  MathSciNet  Google Scholar 

  32. Kharif, C., Pelinovsky, E.: Focusing of nonlinear wave groups in deep water. JETP Lett. 73, 170–175 (2001)

    Article  Google Scholar 

  33. Kimmoun, O., Hsu, H.C., Branger, H., Li, M.S., Chen, Y.Y., Kharif, C., Onorato, M., Kelleher, E.J.R., Kibler, B., Akhmediev, N., Chabchoub, A.: Modulation instability and phase-shifted Fermi-Pasta-Ulam recurrence. Sci. Rep. 6, 28516 (2016)

    Article  Google Scholar 

  34. Krichever, I.M.: Methods of algebraic Geometry in the theory on nonlinear equations. Russ. Math. Surv. 32, 185–213 (1977)

    Article  MathSciNet  Google Scholar 

  35. Krichever, I.M.: Spectral theory of two-dimensional periodic operators and its applications. Russ. Math. Surv. 44(2), 145–225 (1989)

    Article  MathSciNet  Google Scholar 

  36. Krichever, I.M.: Perturbation theory in periodic problems for two-dimensional integrable systems. Sov. Sci. Rev., Sect. C, Math. Phys. Rev. 9(2), 1–103 (1992)

    Google Scholar 

  37. Kuznetsov, E.A.: Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. 22, 507–508 (1977)

    Google Scholar 

  38. Kuznetsov, E.A.: Fermi-Pasta-Ulam recurrence and modulation instability. JETP Lett. 105(2), 125–129 (2017)

    Article  Google Scholar 

  39. Lake, B.M., Yuen, H.C., Rungaldier, H., Ferguson, W.E.: Nonlinear deep-water waves: theory and experiment. Part 2 Evolution of a continuous wave train. J. Fluid Mech. 83(2), 49–74 (1977)

    Article  Google Scholar 

  40. Ma, Y.-C.: The perturbed plane wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    Article  MathSciNet  Google Scholar 

  41. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics. Springer, Berlin (1991)

    Book  Google Scholar 

  42. Novikov, S.P.: The periodic problem for the Korteweg-de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1974)

    Article  MathSciNet  Google Scholar 

  43. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    Article  MathSciNet  Google Scholar 

  44. Osborne, A., Onorato, M., Serio, M.: The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys. Lett. A 275, 386–393 (2000)

    Article  MathSciNet  Google Scholar 

  45. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MathSciNet  Google Scholar 

  46. Pierangeli, D., Di Mei, F., Conti, C., Agranat, A.J., DelRe, E.: Spatial rogue waves in photorefractive ferroelectrics. PRL 115, 093901 (2015)

    Article  Google Scholar 

  47. Salasnich, L., Parola, A., Reatto, L.: Modulational instability and complex dynamics of confined matter-wave solitons. Phys. Rev. Lett. 91, 080405 (2003)

    Article  Google Scholar 

  48. Smirnov, A.O.: Periodic two-phase rogue waves. Math. Not. 94(6), 897–907 (2013)

    Article  MathSciNet  Google Scholar 

  49. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  Google Scholar 

  50. Stokes, G.: On the theory of oscillatory waves. In: Transactions of the Cambridge Philosophical Society, vol. VIII, 197229, and Supplement 314326 (1847)

    Google Scholar 

  51. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation (Self Focusing and Wave Collapse). Springer, Berlin (1999)

    MATH  Google Scholar 

  52. Vespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3(12), 307 (1966)

    Google Scholar 

  53. Taniuti, T., Washimi, H.: Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett. 21, 209–212 (1968)

    Article  Google Scholar 

  54. Weideman, J.A.C., Herbst, B.M.: Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23, 485–507 (1986)

    Article  MathSciNet  Google Scholar 

  55. Taha, T.R., Xu, X.: Parallel split-step fourier methods for the coupled nonlinear Schrödinger type equations. J Supercomput. 5, 5–23 (2005)

    Article  Google Scholar 

  56. Van Simaeys, G., Emplit, P., Haelterman, M.: Experimental demonstration of the Fermi-Pasta-Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902 (2001)

    Article  Google Scholar 

  57. Yuen, H.C., Ferguson, W.E.: Relationship between Benjamin-Feir instability and recurrence in the nonlinear Schrödinger equation. Phys. Fluids 21, 1275 (1978)

    Article  Google Scholar 

  58. Yuen, H., Lake, B.: Nonlinear dynamics of deep-water gravity waves. Adv. Appl. Mech. 22, 67–229 (1982)

    Article  MathSciNet  Google Scholar 

  59. Zakharov, V.E.: Stability of period waves of finite amplitude on surface of a deep fluid. JAMTP 9(2), 190–194 (1968)

    Google Scholar 

  60. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)

    MathSciNet  Google Scholar 

  61. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering transform I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  Google Scholar 

  62. Zakharov, V.E., Mikhailov, A.V.: Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method. Sov. Phys. JETP 47, 1017–27 (1978)

    Google Scholar 

  63. Zakharov, V.E., Gelash, A.A.: On the nonlinear stage of Modulation Instability. PRL 111, 054101 (2013)

    Article  Google Scholar 

  64. Zakharov, V., Ostrovsky, L.: Modulation instability: the beginning. Phys. D Nonlinear Phenom. 238(5), 540–548 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Two visits of P. G. Grinevich to Roma were supported by the University of Roma “La Sapienza”, and by the INFN, Sezione di Roma. P. G. Grinevich and P. M. Santini acknowledge the warm hospitality and the local support of CIC, Cuernavaca, Mexico, in December 2016. P.G. Grinevich was also partially supported by RFBR grant 17-51-150001. We acknowledge useful discussions with F. Briscese, F. Calogero, C. Conti, E. DelRe, A. Degasperis, A. Gelash, I. Krichever, A. Its, S. Lombardo, A. Mikhailov, D. Pierangeli, M. Sommacal and V. Zakharov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Santini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grinevich, P.G., Santini, P.M. (2018). Numerical Instability of the Akhmediev Breather and a Finite-Gap Model of It. In: Buchstaber, V., Konstantinou-Rizos, S., Mikhailov, A. (eds) Recent Developments in Integrable Systems and Related Topics of Mathematical Physics. MP 2016. Springer Proceedings in Mathematics & Statistics, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-030-04807-5_2

Download citation

Publish with us

Policies and ethics