Skip to main content

Climate Change Impacts on Salt Marsh Vegetation Ecophysiology

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 49))

  • 1176 Accesses

Abstract

Ecosystems worldwide are experiencing the effects of climate change, and estuaries and salt marshes are no exception. The plant community will be one of the most affected elements by these climatic shifts, both in terms of structure and dynamics, with undeniable effects on its productivity. This thesis aims to study the effects of climate change on the marsh community dynamics, structure and productivity but also on its biogeochemical cycles and implications at the ecosystem level. Although special attention was given to primary productivity and plant physiology, a multidisciplinary approach was undertaken using both field assessments and mesocosmos trials. The results point out that these physically connected climatic changes are not only interconnected in a physical way but also at an ecological level. Mediterranean marshes will be more severely affected on their foundations, putting the entire ecosystem at risk and prone to climate change side effects and/or to synergistic events. The majority of the evaluated climatic changes have more negative impacts on the marsh pioneer species, affecting inevitably marsh establishment and expansion. Although to a lesser extent, the upper and middle marsh halophytes will also suffer from these climate-driven negative impacts. In addition, the appearance of resistant nonindigenous species (NIS) will add an increased threat to the marsh. The reduction of the pioneer zone in a large extension together with a middle marsh fragilization will open new ecological niches for the colonization of resistant NIS, imposing serious shifts in the marsh structure, dynamics and services provided to the estuarine ecosystem. This is even more evident when a holistic approach is undertaken focusing not only on plant physiology but also the marsh biogeochemistry and estuarine hydrological features. These evidences point out the need to adopt new management efforts, highlighting the desired marsh attributes and ecosystem services in the face of human activities that threaten salt marsh ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  Google Scholar 

  • Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231

    Article  Google Scholar 

  • Barras J, Beville S, Britsch D, Hartley S, Hawes S, Johnston J, Kemp P, Kinler Q, Martucci A, Porthouse J, Reed D, Roy K, Sapkota S, Suhayda J (2004) Historical and projected coastal Louisiana land changes: 1978-2050. USGS Open-File Rep 03-334, 39p

    Google Scholar 

  • Bertness MD (1991) Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72:125–137

    Article  Google Scholar 

  • Blum M, Roberts H (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2:488–491

    Article  CAS  Google Scholar 

  • Boesch DF, Turner RE (1984) Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7:460–468

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–583

    Article  CAS  PubMed  Google Scholar 

  • Borja A, Dauer DM (2008) Assessing the environmental quality status in estuarine and coastal systems: comparing methodologies and indices. Ecol Indic 8:331–337

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Burkett V, Kusler J (2000) Climate change: potential impacts and interactions in wetlands of the United States. J Am Water Resour Assoc 36:313–320

    Article  Google Scholar 

  • Caçador I, Duarte B (2012) Tagus Estuary salt marshes: a historical perspective. In: Jordan JJ (ed) Estuaries: classification, ecology and human impacts. Nova Science Publishers, Inc

    Google Scholar 

  • Caçador I, Duarte B (2014) Eutrophication impacts on salt marshes natural metal remediation. In: Ansari AA, Gill SS (eds) Eutrophication: causes, consequences and control, vol 2. Springer, Dordrecht

    Google Scholar 

  • Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82

    Article  PubMed  CAS  Google Scholar 

  • Caçador I, Neto JM, Duarte B, Barroso DV, Pinto M, Marques JC (2013) Development of an angiosperm quality assessment index (AQuA – Index) for ecological quality evaluation of Portuguese water bodies – a multi-metric approach. Ecol Indic 25:141–148

    Article  Google Scholar 

  • Caçador I, Duarte B, Marques JC, Sleimi N (2015) Carbon mitigation: a salt marsh ecosystem service in times of change. In: Khan MA, Ozturk M, Gul B, Ahmed MZ (eds) Halophytes for food security in dry lands. Elsevier, Amsterdam

    Google Scholar 

  • Chapman VJ (1940) Succession on the New England salt marshes. Ecology 21:279–282

    Article  Google Scholar 

  • Chapman VJ (1977) Introduction. In: Chapman VJ (ed) Wet coastal ecosystems. Elsevier, New York, pp 1–30

    Google Scholar 

  • Chen RH, Twilley RR (1998) A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. J Ecol 86:37–51

    Article  Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington, DC

    Book  Google Scholar 

  • Costanza R, Perez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K (2008) The value of coastal wetlands for hurricane protection. Ambio 37:241–248

    Article  PubMed  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78

    Article  Google Scholar 

  • Day JW Jr, Scarton F, Rismondo A, Are D (1998) Rapid deterioration of a salt marsh in Venice Lagoon, Italy. J Coast Res 14:583–590

    Google Scholar 

  • Day JW, Narras J, Clairain E, Johnston J, Justic D, Kemp GP, Ko JY, Land R, Mitsch WJ, Steyer G, Templet P, Yanez-Arancibia A (2005) Implications of global climatic change and energy cost and availability for the restoration of the Mississippi delta. Ecol Eng 24:253–265

    Article  Google Scholar 

  • Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc Natl Acad Sci 98:14218–14223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte B, Caçador I, Marques JC, Croudace I (2013a) Tagus Estuary salt marshes feedback to sea level rise over a 40-year period: insights from the application of geochemical indices. Ecol Indic 34:268–276

    Article  CAS  Google Scholar 

  • Duarte B, Santos D, Marques JC, Caçador I (2013b) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback – implications for resilience in climate change. Plant Physiol Biochem 67:178–188

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Freitas J, Valentim J, Medeiros JP, Costa JL, Silva H, Dias JM, Marques JC, Caçador I (2014a) Modelling abiotic control of salt marsh sediments respiratory CO2 fluxes: new insights for climate change scenarios. Ecol Indic 46:110–118

    Article  CAS  Google Scholar 

  • Duarte B, Santos D, Marques JC, Caçador I (2014b) Biophysical probing of Spartina maritima Photo-system II changes during increased submersion periods: possible adaptation to sea level rise. Plant Physiol Biochem 77:122–132

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Valentim JM, Dias JM, Silva H, Marques JC, Caçador I (2014c) Modelling sea level rise (SLR) impacts on salt marsh detrital outwelling C and N exports from an estuarine coastal lagoon to the ocean (Ria de Aveiro, Portugal). Ecol Model 289:36–44

    Article  CAS  Google Scholar 

  • Duarte B, Silva H, Marques JC, Caçador I, Sleimi N (2014d) Light-dark O2 dynamics in submerged leaves of C3 and C4 halophytes under increased dissolved CO2: clues for saltmarsh response to climate change. Ann Bot Plants 6:plu067

    Google Scholar 

  • Duarte B, Santos D, Silva H, Marques JC, Caçador I (2014e) Photochemical and biophysical feedbacks of C3 and C4 mediterranean halophytes to atmospheric CO2 enrichment confirmed by their stable isotope signatures. Plant Physiol Biochem 80:10–22

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Santos D, Marques JC, Caçador I (2015a) Impact of extreme heat and cold events on the energetic metabolism of the C3 halophyte Halimione portulacoides. Estuar Coast Shelf Sci 167:166–177

    Article  CAS  Google Scholar 

  • Duarte B, Goessling JW, Marques JC, Caçador I (2015b) Ecophysiological constrains of Aster tripolium under extreme thermal events impacts: merging biophysical, biochemical and genetic insights. Plant Physiol Biochem 97:217–228

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Baeta A, Rousseau-Gueutin M, Ainouche M, Marques JC, Caçador I (2015c) A tale of two Spartinas: climatic, photobiological and isotopic insights on the fitness of invasive versus native species. Estuar Coast Shelf Sci 167:178–190

    Article  CAS  Google Scholar 

  • Duarte B, Marques JC, and Caçador I (2015d) Ecophysiological responses of native and invasive Spartinaspecies to extreme temperature events in Mediterranean marshes. Biol Invasions 18, 2189–2205

    Article  Google Scholar 

  • Duarte B, Marques JC, Caçador I (2016) Ecophysiological responses of native and invasive Spartina species to extreme temperature events in mediterranean marshes. Biol Invasions 18:2189–2205

    Article  Google Scholar 

  • Duarte B, Vaz N, Valentim JM, Dias JM, Silva H, Marques JC, Caçador I (2017) Revisiting the outwelling hypothesis: modelling salt marsh detrital metal exports under extreme climatic events. Mar Chem 191:24–33

    Article  CAS  Google Scholar 

  • Erickson JE, Megonigal JP, Peresta G, Drake BG (2007) Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob Chang Biol 13:202–215

    Article  Google Scholar 

  • Esteves-de-Sousa A (1950) Acerca da sub-halosérie da região salgadiça litoral, entre Corroios e Talaminho. Revista da Faculdade de Ciências (Lisboa), Revista de Ciências Naturais

    Google Scholar 

  • Florides GA, Christodoulides P (2009) Global warming and carbon dioxide through sciences. Environ Int 35:390–401

    Article  CAS  PubMed  Google Scholar 

  • Han B, Wang XK, Ouyang ZY (2005) Saturation levels and carbon sequestration potentials of soil carbon pools in farmland ecosystems of China. Rural Eco-Environ 21:6–11

    CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449

    Article  CAS  Google Scholar 

  • Hartig EK, Gornitz V, Kolker A, Mushacke F, Fallon D (2002) Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands 22:71–89

    Article  Google Scholar 

  • Hodgkin EP, Hamilton B (1998) Changing estuarine wetlands: a long term perspective for management. In: McComb AJ, Davis JA (eds) Wetlands for the future. Gleneagles Publishing, Adelaide, pp 243–255

    Google Scholar 

  • Hughes RG (2004) Climate change and loss of saltmarshes: consequences for birds. Ibis 146(suppl 1):21–28

    Article  Google Scholar 

  • IPCC (1998) The regional impacts of climate change: an assessment of vulnerability. In: Watson RT, Zinyowera MC, Moss RH (eds) A special report of IPCC working group II. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, New York

    Google Scholar 

  • IPCC (2012) In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York. 582 pp

    Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York. 1535 pp

    Google Scholar 

  • IPCC (2014) In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  CAS  PubMed  Google Scholar 

  • Kearney MS, Grace RE, Stevenson JC (1988) Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geogr Rev 78:205–220

    Article  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Lefeuvre JC, Laffaille P, Feunteun E, Bouchard V, Radureau A (2003) Biodiversity in salt marshes: from patrimonial value to ecosystem functioning. The case study of the Mont-Saint-Michel bay. C R Biol 326:125–131

    Article  Google Scholar 

  • Lenssen GM, Lamers J, Stroetenga M, Rozema J (1993) Interactive effects of atmospheric CO2 enrichment, salinity and flooding on growth of C3 (Elymus athericus) and C4 (Spartina anglica) salt marsh species. Vegetatio 104(105):379–388

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  CAS  PubMed  Google Scholar 

  • Magenheimer JF, Moore TR, Chmura GL, Daoust RJ (1996) Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries 19:139–145

    Article  CAS  Google Scholar 

  • Marinucci AC (1982) Trophic importance of Spartina alterniflora production and decomposition to the marsh estuarine ecosystem. Biol Conserv 22:35–58

    Article  Google Scholar 

  • McKee K, Mendelssohn IA, Materne MD (2004) Acute salt marsh dieback in the Mississippi River deltaic plain: a drought induced phenomenon? Glob Ecol Biogeogr 13:65–73

    Article  Google Scholar 

  • Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol Appl 7:770–801

    Article  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Munari C, Mistri M (2008) The performance of benthic indicators of ecological change in Adriatic coastal lagoons: throwing the baby with the water? Mar Pollut Bull 56:95–105

    Article  CAS  PubMed  Google Scholar 

  • Murphy D, Solomon S, Portmann R, Rosenlof K, Forster P, Wong T (2009) An observationally based energy balance for the Earth since 1950. J Geophys Res Atmos 114:D17107

    Article  Google Scholar 

  • Niering WA (1977) Our dynamic tidal marshes: vegetation changes as revealed by peat analysis. Conn Arboretum Bull 22:2–12

    Google Scholar 

  • Nixon SW (1980) Between coastal marshes and coastal waters--a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In: Hamilton P, MacDonald K (eds) Estuarine and wetland processes. Plenum Publishing Corporation, New York, pp 437–523

    Chapter  Google Scholar 

  • Redfield AC (1965) Ontogeny of a salt marsh estuary. Science 147:50–55

    Article  CAS  PubMed  Google Scholar 

  • Rogers K, Saintilan N, Heijnis H (2005) Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence and sea level rise. Estuaries 28:551–559

    Article  Google Scholar 

  • Roman CT, Peck JA, Allen JR, King JW, Appleby PG (1997) Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise. Estuar Coast Shelf Sci 45:717–727

    Article  Google Scholar 

  • Rozema J, Dorel F, Janissen R, Lenssen G, Broekman R, Arp W, Drake BG (1991) Effect of elevated atmospheric CO2 on growth, photosynthesis and water relations of salt marsh grass species. Aquat Bot 39:45–55

    Article  Google Scholar 

  • Rybczyk JM, Callaway JC, Day JW (1998) A relative elevation model for a subsiding coastal forested wetland receiving wastewater effluent. Ecol Model 112:23–44

    Article  CAS  Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–55

    Article  CAS  PubMed  Google Scholar 

  • Sousa AI, Lillebo AI, Pardal MA, Caçador I (2010) The influence of S. maritima on carbon retention capacity in salt marshes from warm-temperate estuaries. Mar Pollut Bull 61:215–223

    Article  CAS  PubMed  Google Scholar 

  • Teixeira A, Duarte B, Caçador I (2014) Salt marshes and Biodiversity. In: Khan MA, Böer B, Öztürk M, Al Abdessalaam TZ, Clüsener-Godt M, Gul B (eds) Sabkha ecosystems: volume IV: cash crop halophytes and biodiversity conservation, Tasks for vegetation science Vol. 47. Springer, Dordrecht

    Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323

    Article  Google Scholar 

  • Turner RE (1976) Geographic variations in salt marsh macrophyte production: a review. Contrib Mar Sci 20:47–68

    Google Scholar 

  • UNEP (2006) Marine and coastal ecosystems and human well-being: a synthesis report based on the findings of the Millennium ecosystem assessment. UNEP, Nairobi

    Google Scholar 

  • USGCRP (2000) Climate change and America: overview document. In: A report of the national assessment synthesis team. US global change research program, Washington, DC

    Google Scholar 

  • Valentim JM, Vaz L, Vaz N, Silva H, Duarte B, Caçador I, Dias JM (2013) Sea level rise impact in residual circulation in Tagus estuary and Ria de Aveiro lagoon. J Coast Res SI 65:1981–1986

    Article  Google Scholar 

  • Valiela I, Cole ML (2002) Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5:92–102

    Article  Google Scholar 

  • Valiela I, Teal JM (1979) The nitrogen budget of a salt marsh ecosystem. Nature 280:652–656

    Article  CAS  Google Scholar 

  • Valiela I, Peckol P, D’Avanzo C, Kremer J, Hersh D, Foreman K, Lajtha K, Seely B, Geyer WR, Isaji T, Crawford R (1998) Ecological effects of major storms on coastal watersheds and coastal waters: Hurricane Bob on Cape Cod. J Coast Res 14:218–238

    Google Scholar 

  • Warren RS, Niering WA (1993) Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74:96–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Caçador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caçador, I., Duarte, B., Marques, J.C. (2019). Climate Change Impacts on Salt Marsh Vegetation Ecophysiology. In: Gul, B., Böer, B., Khan, M., Clüsener-Godt, M., Hameed, A. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-04417-6_12

Download citation

Publish with us

Policies and ethics