Skip to main content

Theory and Practice of Material Development Under Imperfect Information

  • Conference paper
  • First Online:
13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing — ICAFS-2018 (ICAFS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 896))

Abstract

Material development is an important research problem in material science and engineering. Nowadays, computational approaches to these problems are used to alternate natural experiments. These approaches include data mining, machine learning and computational intelligence tools that rely on big data on material characteristics collected over long period experiments. One of the important issues in solving these problems is imperfect nature of information. In the present study we outline fuzzy logic and Z-number concept-based computational methodologies for material synthesis and selection to account for imprecision and partial reliability of relevant information. Several examples are provided to confirm validity of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H.: The arithmetic of discrete Z-numbers. Inform. Sci. 290, 134–155 (2015)

    Article  MathSciNet  Google Scholar 

  2. Aliev, R.A., Aliev, R.R.: Soft Computing and its Application. World Scientific, New Jersey (2001)

    Book  Google Scholar 

  3. Averill, B.A., Eldredge, P.: Principles of General Chemistry. McGraw-Hill Education, New York City (2012)

    Google Scholar 

  4. Babanli, M.B., Huseynov, V.M.: Z-number-based alloy selection problem. Procedia Comput. Sci. 102, 183–189 (2016)

    Article  Google Scholar 

  5. Babanli, M.B.: Synthesis of new materials by using fuzzy and big data concepts. Procedia Comput Sci 120, 104–111 (2017)

    Article  Google Scholar 

  6. Amalgam, D.: A Scientific Review and Recommended Public Health Service Strategy for Research, Education and Regulation Final Report of the Subcommittee on Risk Management of the Committee to Coordinate Environmental Health and Related Programs Public Health Service. Department of Health and Human Services Public Health Service (1993) https://health.gov/environment/amalgam1/selection.htm

  7. Factors Influencing Materials Selection. http://mechanical-materialstechnology.blogspot.com/2011/08/factors-influencing-materials-selection.html

  8. Frenzel, J., Wieczorek, A., Opahle, I., Maa, B., Drautz, R., Eggeler, G.: On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 90, 213–231 (2015)

    Article  Google Scholar 

  9. Hashimoto, K., Kimura, M., Mizuhara, Y.: Alloy design of gamma titanium aluminides based on phase diagrams. Intermetallics 6(7–8), 667–672 (1998)

    Article  Google Scholar 

  10. Kóczy, L.T.: Approximate reasoning by linear rule interpolation and general approximation. Int. J. Approx. Reason. 9(3), 197–225 (1993)

    Article  MathSciNet  Google Scholar 

  11. Kosmač, A.: Factors affecting material selection for high temperature applications – review (2017). https://steelmehdipour.net/wp-content/uploads/2017/02/Factors-affecting-material-selection-for-high-temperature-applications.pdf

  12. Laidler, K.J., Meiser, J.H.: Physical Chemistry. Oxford University Press, Oxford (1995)

    Google Scholar 

  13. Larson, E.: Thermoplastic Material Selection, a Practical Guide. William Andrew, London (2015)

    Google Scholar 

  14. Papon, P., Leblond, J., Meijer, P.H.E.: The Physics of Phase Transition: Concepts and Applications. Springer, Berlin (2002). https://doi.org/10.1007/3-540-33390-8

    Book  MATH  Google Scholar 

  15. Petrucci, R.H., Harwood, W.S., Herring, F.G.: General Chemistry. Principles and Modern Applications. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  16. Predel, B., Hoch, M., Pool, M.: Phase Diagrams and Heterogeneous Equilibria: A Practical Introduction. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-09276-7

    Book  Google Scholar 

  17. Preuss, M., Wessing, S., Rudolph, G., Sadowski, G.: Solving phase equilibrium problems by means of avoidance-based multiobjectivization. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_58

    Chapter  Google Scholar 

  18. Stan, M., Reardon, B.J.: A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams. Comput. Coupling Phase Diagr. Thermochem. 27(3), 319–323 (2003)

    Article  Google Scholar 

  19. Welling, D.A.: A fuzzy logic material selection methodology for renewable ocean energy applications. Proquest, Umi Dissertation Publishing, 154 p. (2011)

    Google Scholar 

  20. Yazdani, M., Graeml, F.R.: VIKOR and its applications: a state-of-the-art survey. Int. J. Strat. Decis. Sci. 5(2), 56–83 (2014)

    Article  Google Scholar 

  21. Zadeh, L.A.: A note on Z-numbers. Inform. Sci. 181, 2923–2932 (2011)

    Article  MathSciNet  Google Scholar 

  22. Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)

    Article  Google Scholar 

  23. Zadeh, L.A.: Interpolative reasoning in fuzzy logic and neural network theory. In: Proceedings of the First IEEE International Conference Fuzzy, San-Diego, CA, March 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Babanli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babanli, M.B. (2019). Theory and Practice of Material Development Under Imperfect Information. In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Sadikoglu, F. (eds) 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing — ICAFS-2018. ICAFS 2018. Advances in Intelligent Systems and Computing, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-030-04164-9_4

Download citation

Publish with us

Policies and ethics