Skip to main content

Skin Cancer Segmentation Using a Unified Markov Random Field

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11241))

Included in the following conference series:

Abstract

Most of the medical institutions still use manual methods to detect the skin cancers tumors. However, melanoma detection using human vision alone can be subjective, inaccurate and poorly reproducible even among experienced dermatologists. This is attributed to the challenges in the automatic segmentation of skin cancer due to many factors, such as different skin colors and the presence of hair, diverse characteristics including lesions of varying sizes and shapes, lesions that may have fuzzy boundaries. To address these factors, a Unified Markov Random Field (UMRF) is used to segment both pixel information and regional information corresponding to skin lesions from the images, where UMRF model lies in two aspects. First, it combines the benefits of the pixel-based and the region-based Markov Random Field (MRF) models by decomposing the likelihood function into the product of the pixel likelihood function and the regional likelihood function. The experimental results show that the employed method has high precision \(83.08\%\) (Jaccard Index).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  2. Celebi, M.E., et al.: Automatic detection of Blue-White veil and related structures in dermoscopy images. Comput. Med. Imaging Graph. 32(8), 670–677 (2008)

    Article  Google Scholar 

  3. Xiaouhui, C., Chen, Z., Hongtai, Y., Bingxue, W.: Image segmentation using a unified Markov random field. Inst. Eng. Technol. 10(11), 860–869 (2017)

    Google Scholar 

  4. Rogers, H.W., Weinstock, M.A., Feldman, S.R., Coldiron, B.M.: Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatology 151(10), 1081–1086 (2015)

    Article  Google Scholar 

  5. Chien, S.Y., Huang, Y.W., Chen, L.W.: Predictive watershed: a fast watershed algorithm for video segmentation. IEEE Trans. Circ. Syst. Video Technol. 13(5), 453–461 (2003)

    Article  Google Scholar 

  6. Comaniciu, D., Meer, P.: Mean Shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  7. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  8. Levinshtein, A., Stere, A., Kutulakos, K.N.: Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  9. Li, S.Z.: Markov Random Field Modeling in Image Analysis, 3rd edn. Springer, London (2009). https://doi.org/10.1007/978-1-84800-279-1

    Book  MATH  Google Scholar 

  10. Yading, Y.: ISIC 2017: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. https://arxiv.org/pdf/1703.05165.pdf. Accessed 27 June 2018

  11. Matt, B.: ISIC 2017- Skin Lesion Analysis Towards Melanoma Detection. https://arxiv.org/ftp/arxiv/papers/1703/1703.00523.pdf. Accessed 27 June 2018

  12. Lei, B, Jinman, K, Euijoon A, and Dagan F.: ISIC 2017- Automatic Skin Lesion Analysis using Large-scale Dermoscopy Images and Deep Residual Networks. https://arxiv.org/ftp/arxiv/papers/1703/1703.04197.pdf. Accessed 27 June 2018

  13. National Cancer Center Singapora. https://www.nccs.com.sg. Accessed 20 June 2018

  14. Nijsten, T., Louwman, M.W., Coebergh, J.W.: Skin cancer epidemic in the Netherlands. Nederlands tijdschrift voor geneeskunde 153, A768–A768 (2009)

    Google Scholar 

  15. Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst. Appl. 42(19), 6578–6585 (2015)

    Article  Google Scholar 

  16. ISIC 2017: Skin Lesion Analysis Towards Melanoma Detection. https://challenge.kitware.com/#challenges. Accessed 26 June 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salih, O., Viriri, S. (2018). Skin Cancer Segmentation Using a Unified Markov Random Field. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2018. Lecture Notes in Computer Science(), vol 11241. Springer, Cham. https://doi.org/10.1007/978-3-030-03801-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03801-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03800-7

  • Online ISBN: 978-3-030-03801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics