Skip to main content

5G Applications and Architectures

  • Chapter
  • First Online:
5G Enabled Secure Wireless Networks

Abstract

In the next decade, mobile traffic will supposedly increase a thousand-fold compared with what we are currently using owing to the addition of IoT devices, immense multimedia data circulation, and automated devices such as driverless cars. To fulfill the ongoing growth, the next-generation cellular network should able to accommodate this size in its service span. At the same time, the low-latency, high-span service is becoming a necessity of today’s devices. To accomplish the future demand, large-scale network adaptation requires next-generation cellular infrastructure, known as fifth generation (5G). In this chapter, we discuss how these requirements can be achieved over the next 10 years. We have covered the techniques that we presume to have a good possibility of being adopted in next-generation 5G networks. The proposed technology has been described in several texts and accepted in many technical recommendation reports. It is observed that large-capacity growth can only be possible with major architectural adoption in cellular and wireless network technology. This chapter provides insights into the evolution of cellular technology and can be used as a guideline for technology development toward 5G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Lin, Synchronization requirements for 5G: an overview of standards or specifications for cellular networks. IEEE Veh. Technol. Mag. 13, 1–1 (2018)

    Article  Google Scholar 

  2. S.K. Biswash, D.N.K. Jayakody, Performance based user-centric dynamic mode switching and mobility management scheme for 5G networks. J. Netw. Comput. Appl. 116, 24–34 (2018)

    Article  Google Scholar 

  3. S.A. Hassan, M.S. Omar, M.A. Imran, J. Qadir, D.N.K. Jayako, Universal access in 5G networks, potential challenges and opportunities for urban and rural environments, in 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management, ed. by A. Al-Dulaimi, X. Wang, I. Chih-Lin (Wiley, Hoboken, 2018)

    Google Scholar 

  4. M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18(3), 1617–1655 thirdquarter (2016)

    Google Scholar 

  5. Huawei, 5G network architecture – a high-level perspective. (2016) http://www.huawei.com/en/industry-insights/mbb-2020/trends-insights/5g-network-architecture

  6. P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S.A. Ashraf, B. Almeroth, J. Voigt, I. Riedel et al., Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun. Mag. 55(2), 70–78 (2017)

    Article  Google Scholar 

  7. P.K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)

    Article  Google Scholar 

  8. S.B.H. Said, M.R. Sama, K. Guillouard, L. Suciu, G. Simon, X. Lagrange, J.-M. Bonnin, New control plane in 3GPP LTE/EPC architecture for on-demand connectivity service, in 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet) (IEEE, 2013), pp. 205–209

    Google Scholar 

  9. Z. Wang, W. Zhang, A separation architecture for achieving energy-efficient cellular networking. IEEE Trans. Wirel. Commun. 13(6), 3113–3123 (2014)

    Article  Google Scholar 

  10. C.J. Bernardos, A.D.L. Oliva, P. Serrano, A. Banchs, L.M. Contreras, H. Jin, J.C. Zúñiga, An architecture for software defined wireless networking. IEEE Wirel. Commun. 21(3), 52–61 (2014)

    Article  Google Scholar 

  11. J. Costa-Requena, SDN integration in LTE mobile backhaul networks, in 2014 International Conference on Information Networking (ICOIN) (IEEE, 2014), pp. 264–269

    Google Scholar 

  12. Z. Ma, Z. Zhang, Z. Ding, P. Fan, H. Li, Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci. China Inf. Sci. 58(4), 1–20 (2015)

    Article  Google Scholar 

  13. S.M.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutorials 19(2), 721–742 (2017)

    Article  Google Scholar 

  14. S. Qureshi, S.A. Hassan, D.N.K. Jayakody, Divide-and-allocate: an uplink successive bandwidth division NOMA system. Trans. Emerg. Telecommun. Technol. 29(1), e3216 (2017)

    Google Scholar 

  15. B. Yi, X. Wang, K. Li, M. Huang et al., A comprehensive survey of network function virtualization. Comput. Netw. 133, 212–262 2018

    Article  Google Scholar 

  16. S.M. Islam, M. Zeng, O.A. Dobre, NOMA in 5G systems: exciting possibilities for enhancing spectral efficiency (2017). arXiv preprint:1706.08215

    Google Scholar 

  17. T.L. Marzetta, Massive MIMO: an introduction. Bell Labs Tech. J. 20, 11–22 (2015)

    Article  Google Scholar 

  18. Y. Niu, Y. Li, D. Jin, L. Su, A.V. Vasilakos, A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges. Wirel. Netw. 21(8), 2657–2676 (2015)

    Article  Google Scholar 

  19. T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez Jr., Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1(1), 335–349 (2013)

    Article  Google Scholar 

  20. W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)

    Article  Google Scholar 

  21. L.F.M. Vieira, M.A.M. Vieira, Network coding for 5G network and D2D communication, in Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks (ACM, 2017), pp. 113–120

    Google Scholar 

  22. I. Al Shiab, Cross-layer software defined networks: a survey.

    Google Scholar 

  23. Y. Niu, Y. Li, M. Chen, D. Jin, S. Chen, A cross-layer design for a software-defined millimeter-wave mobile broadband system. IEEE Commun. Mag. 54(2), 124–130 (2016)

    Article  Google Scholar 

  24. H. Baligh, M. Hong, W.-C. Liao, Z.-Q. Luo, M. Razaviyayn, M. Sanjabi, R. Sun, Cross layer provision of future cellular networks (2014). arXiv preprint: 1407.1424

    Google Scholar 

  25. J. Tang, W.P. Tay, T.Q.S. Quek, Cross-layer resource allocation with elastic service scaling in cloud radio access network. IEEE Trans. Wirel. Commun. 14(9):5068–5081 (2015)

    Article  Google Scholar 

  26. B. Fu, Y. Xiao, H. Deng, H. Zeng, A survey of cross-layer designs in wireless networks. IEEE Commun. Surv. Tutorials 16(1), 110–126 (2014)

    Article  Google Scholar 

  27. X. Lin, N.B. Shroff, R. Srikant, A tutorial on cross-layer optimization in wireless networks. IEEE J. Sel. Areas Commun. 24(8), 1452–1463 (2006)

    Article  Google Scholar 

  28. L.D.P. Mendes, J.J.P.C. Rodrigues, A survey on cross-layer solutions for wireless sensor networks. J. Netw. Comput. Appl. 34(2), 523–534 (2011)

    Article  Google Scholar 

  29. R. Ranjan, S. Varma, Challenges and implementation on cross layer design for wireless sensor networks. Wirel. Pers. Commun. 86(2), 1037–1060 (2016)

    Article  Google Scholar 

  30. I. Al-Anbagi, M. Erol-Kantarci, H.T. Mouftah, A survey on cross-layer quality-of-service approaches in WSNS for delay and reliability-aware applications. IEEE Commun. Surv. Tutorials 18(1), 525–552 (2016)

    Article  Google Scholar 

  31. R. Muraleedharan, L.A. Osadciw, Security: cross layer protocol in wireless sensor network, in INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings (IEEE, 2006), pp. 1–2

    Google Scholar 

  32. D.K. Sah, T. Amgoth, Parametric survey on cross-layer designs for wireless sensor networks. Comput. Sci. Rev. 27, 112–134 (2018)

    Article  MathSciNet  Google Scholar 

  33. M.C. Vuran, I.F. Akyildiz, XLP: a cross-layer protocol for efficient communication in wireless sensor networks. IEEE Trans. Mob. Comput. 9(11), 1578–1591 (2010)

    Article  Google Scholar 

  34. R, Trivisonno, R, Guerzoni, I, Vaishnavi, D. Soldani, SDN-based 5G mobile networks: architecture, functions, procedures and backward compatibility. Trans. Emerg. Telecommun. Technol. 26(1), 82–92 (2015)

    Google Scholar 

  35. Network Functions Virtualisation, SDN and openflow world congress (2012)

    Google Scholar 

  36. ETSI, Network function virtualisation-white paper2 (2013). http://portal.etsi.org/NFV/NFV_White_Paper2.pdf

    Google Scholar 

  37. NFVISG ETSI, Network functions virtualization, white paper (2014). http://www.esti.org/technologiescluster/technologies/nfv

  38. P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, J. Yao, 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)

    Article  Google Scholar 

  39. B. Blanco, J.O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng, J. Pérez-Romero, I. Trajkovska, P.S. Khodashenas, L. Goratti, M. Paolino et al., Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput. Stand. Interfaces 54, 216–228 (2017)

    Article  Google Scholar 

  40. K. Greene, TR10: software-defined networking. Technology Review (MIT) (2009)

    Google Scholar 

  41. P. Newman, G. Minshall, T.L. Lyon, IP switching-ATM under IP. IEEE/ACM Trans. Networking (TON) 6(2), 117–129 (1998)

    Google Scholar 

  42. N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S. Shenker, NOX: towards an operating system for networks. ACM SIGCOMM Comput. Commun. Rev. 38(3), 105–110 (2008)

    Article  Google Scholar 

  43. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

    Article  Google Scholar 

  44. C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas, M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe et al., Network service orchestration standardization: a technology survey. Comput. Stand. Interfaces 54, 203–215 (2017)

    Article  Google Scholar 

  45. Open Networking Foundation, Software-defined networking: the new norm for networks. ONF White Pap. 2, 2–6 (2012)

    Google Scholar 

  46. D. Kreutz, F.M.V. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Procee. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  47. H. Jamjoom, D. Williams, U. Sharma, Don’t call them middleboxes, call them middlepipes, in Proceedings of the third workshop on Hot topics in software defined networking (ACM, 2014), pp. 19–24

    Google Scholar 

  48. M. Series, IMT vision–framework and overall objectives of the future development of IMT for 2020 and beyond (2015)

    Google Scholar 

  49. Open Network Foundation, Openflow switch specifications 1.5.0. https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf

  50. J.P. Vasseur, J.L. Le Roux, Path computation element (PCE) communication protocol (PCEP). Technical report (2009)

    Google Scholar 

  51. R. Enns, M. Bjorklund, J. Schoenwaelder, Network configuration protocol (NETCONF). Network (2011). http://www.rfc-editor.org/info/rfc6241

  52. Open Network Foundation, Of-config 1.2: openflow management and configuration protocol (2014). https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf

  53. ITU, ITU-T recommendation M.3100: generic network information model. ITU 1, 1–6 (2005)

    Google Scholar 

  54. ITU, M.3102: unified generic management information model for connection-oriented and connectionless networks. ITU-T 1, 1–6 (2011)

    Google Scholar 

  55. DMTF Common Information Model, DMTF 1, 1–6. http://www.dmtf.org/standards/cim

  56. Open Network Foundation, Core information model (coremodel). https://www.opennetworking.org/images/stories/downloads/sdn-resources/technicalreports/ONF-CIM_Core_Model_base_document_1.1.pdf

  57. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., Onos: towards an open, distributed SDN OS, in Proceedings of the third workshop on Hot topics in software defined networking (ACM, 2014), pp. 1–6

    Google Scholar 

  58. J. Medved, R. Varga, A. Tkacik, K. Gray, OpenDaylight: towards a model-driven SDN controller architecture, in 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (IEEE, 2014), pp. 1–6

    Google Scholar 

  59. D. Katz, K. Kompella, D. Yeung, Traffic engineering (TE) extensions to OSPF version 2. Technical report (2003)

    Google Scholar 

  60. D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-TE: extensions to RSVP for LSP tunnels. Technical report (2001)

    Google Scholar 

  61. D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The locator/ID separation protocol (LISP). Technical report (2013)

    Google Scholar 

  62. OTF, Project ASPEN: real time media interface specification.

    Google Scholar 

  63. E. Crabbe, R. Varga, J. Medved, I. Minei, PCEP extensions for stateful PCE, internet-draft draft-ietf-pce-stateful-pce-14. Internet Eng. Task Force 1, 1–6 (2017)

    Google Scholar 

  64. Q. Wu, D. Dhody, D. Lopez, O.G. de Dios, Secure transport for PCEP, internet-draft draft-ietf-pce-pceps-10. Internet Eng. Task Force 1, 1–6 (2018)

    Google Scholar 

  65. S. Hares, Intent-based nemo overview. Internet Draft RFC 1, 1–6 (2015)

    Google Scholar 

  66. E.W. Burger, J. Seedorf, Application-layer traffic optimization (ALTO) problem statement (2009)

    Google Scholar 

  67. NEC NEC, Programmableflow: redefining cloud network virtualization with openflow. https://www.necam.com/whitepapers/Docs/?S=Pflow

  68. E.T. Docket, Technical report, Technical Report (2017). https://www.opnfv.org/

  69. Specifications Technical Report Docket, ET., Technical report (2017). https://portal.3gpp.org/desktopmodules/specifications/specificationdetails.aspx?specificationid=3144

  70. P. Neves, R. Calé, M. Costa, G. Gaspar, J. Alcaraz-Calero, Q. Wang, J. Nightingale, G. Bernini, G. Carrozzo, Á. Valdivieso et al., Future mode of operations for 5G–the SELFNET approach enabled by SDN/NFV. Comput. Stand. Interfaces 54, 229–246 (2017)

    Article  Google Scholar 

  71. C. Price, S. Rivera et al., OPNFV: an open platform to accelerate NFV. White Paper. A Linux Foundation Collaborative Project (2012)

    Google Scholar 

  72. OTF, Project boulder: intent northbound interface (NBI). Open Netw Found. 1, 1–6 (2015)

    Google Scholar 

  73. P. Borril, M. Burgess, T. Craw, M. Dvorkin, A promise theory perspective on data networks. arXiv preprint: 1405.2627 (2014)

    Google Scholar 

  74. OTF, Neutron developer documentation. http://docs.openstack.org/developer/neutron/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 I NEMO

It is a domain-specific language (DSL), following the declarative programming paradigm. Its progressing project is to make abstract specification on an end-point, describe a network end-point, a connection, describe connectivity requirements between network end-points, and an operation describes packet operations.

Huawei is currently leading an implementation initiative, based on ODL and the OPNFV project [71]. In parallel, the ONF has recently organized a work group to standardize a common intent model. The group aims to fulfill two objectives:

  1. a.

    Define the architecture and requirements of intent implementations across controllers and define portable intent expressions.

  2. b.

    Develop a community-approved information model that unifies intent interfaces across controllers.

The particular standard is combined with the improvement of the Boulder structure [72], an open-source [73], OpenStack Neutron [74], and portable intent system that can be incorporated into all major SDNs. Its intent toward the goals through a grammar, which comprises subjects, predicates, and targets. The dialect can be extended to incorporate imperatives and conditions. The reference support execution has set up similarity with ODL through the Network Intent Composition (NIC) project, whereas ONOS support is currently being worked on.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sah, D.K., Kumar, D.P., Shivalingagowda, C., Jayasree, P.V.Y. (2019). 5G Applications and Architectures. In: Jayakody, D., Srinivasan, K., Sharma, V. (eds) 5G Enabled Secure Wireless Networks . Springer, Cham. https://doi.org/10.1007/978-3-030-03508-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03508-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03507-5

  • Online ISBN: 978-3-030-03508-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics