Skip to main content

5G Security: Concepts and Challenges

  • Chapter
  • First Online:
5G Enabled Secure Wireless Networks

Abstract

In the near future, the world will experience the 5G technology which is capable of offering many advanced features. As people get a deeper understanding of mobile communication, they also expect a higher level of privacy and security. Communication security involves the delivery of contents to the intended recipients while preventing the unauthorized access in an intelligible form by interceptors. The main objective of this chapter is to explain why security is fundamental to 5G and how it is different from 2G/3G/4G securities in relation to obligations, threats, and solutions. We also focus on physical layer security, which safeguards data confidentiality by exploiting the intrinsic randomness of the communications medium and reaping the benefits offered by the disruptive technologies of 5G. The standards and characteristics of 5G are also discussed in the chapter. The design architecture of the 5G network plan is included to address the challenges perceived. Based upon the experts’ knowledge, the roadmap to 5G is specified in the communication ecosystem. Security needs to be established to not only protect users from the existing threats but also address the rising and emerging threats. There are also many more existing concepts along with the security protocols to improve the resilience of 5G radio access networks. 5G security will have to take a quantum leap to meet the demands of modern society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 26 April 2019

    The original version of the book was inadvertently published with the incorrect Affiliation of Hema Ganesh Jami. The Affiliation detail has now been corrected from “National Ilan University, Yilan City, Taiwan” to “Veltech Rangarajan Dr.Sagunthala R&D Insititute of Science and Technology,Chennai, India.”.

Abbreviations

AKA:

Authentication and Key Agreement protocol

AMTS:

Advanced mobile telephone system

AN:

Artificial noise

API:

Application programming interface

ASM:

Antenna subset modulation

BC-CM:

Broadcast channel with confidential message

BER:

Bit error rate

BS:

Base station

BYOD:

Bring your own device

CR:

Cognitive radio

DNS:

Domain Name System

DoF:

Degrees of Freedom

EAP:

Edge Automation Platform

eMBB:

Enhanced Mobile Broadband

EPS:

Evolved Packet System

ETCI:

European Telecommunications Standards Institute

ETSI:

European Telecommunications Standards Institute

FDD:

Frequency Division Duplex

FDMA:

Frequency Division Multiple Access

HD:

High Definition

HIP:

Host Identity Protocol

HTTP:

Hypertext Transfer Protocol

IEC:

International Electro-technical Commission

IEEE:

Institute of Electrical and Electronics Engineers

IETF:

Internet Engineering Task Force

IMSI:

International Mobile Subscriber Identity

IMT:

International Mobile Telecommunication

IMTS:

Improved Mobile Telephone System

IP:

Internet Protocol

IPv4:

Internet Protocol version 4

IPv6:

Internet Protocol version 6

IPWAVE:

Internet Protocol Wireless Access in Vehicular Environment

ISO:

International Organization for Standardization

ITU:

International Telecommunication Union

KKT:

Karush-Kuhn-Tucker

LDPC:

Low-density parity check

LTE:

Long-Term Evolution

M2M:

Machine to machine

MA-WC:

Multiple access wiretap channel

MIMO:

Multiple input, multiple output

mmWave:

Millimeter Wave

MPWG:

Mobile Platform Work Group

MTS:

Mobile telephone system

NERC:

North American Electric Reliability Corporation

NOMA:

Non-orthogonal multiple access

NP:

Network planning

ONF:

Open Networking Foundation

PTT:

Push to talk

QoS:

Quality of service

RAN:

Radio access network

RS:

Relay stations

SDO:

Standards Development Organization

SDR:

Software-defined radio

SIC:

Self-interference cancellation

SINR:

Signal-to-interference-noise ratio

TCG:

Trusted Computing Group

TCP:

Transmission Control Protocol

TDD:

Time division duplex

UAV:

Unmanned aerial vehicle

USIM:

Universal Subscriber Identity Module

WG:

Working group

ZFBF:

Zero-forcing beam-forming

References

  1. G. Asvin, H. Modi, S.K. Patel, 5G technology of mobile communication: A survey, in IEEE International Conference on Intelligent Systems and Signal Processing (ISSP), Gujarat, 2013, pp. 288–292

    Google Scholar 

  2. Internet source – isindexing.com

  3. M.K. Arjmandi, 5G overview: Key technologies, in Opportunities in 5G Networks: A Research and Development Perspective, ed. by F. Hu (CRC Press, Boca Raton, 2016)

    Google Scholar 

  4. Internet source – www.nou.edu.ng

  5. P. Sharma, Evolution of mobile wireless communication networks-1G to 5G as well as future prospective of next generation. Int. J. Comput. Sci. Mob. Comput. 2(8), 47–53 (2013)

    Google Scholar 

  6. Internet source – scm-fallersleben.ciando.com

  7. M. Chen, Y. Qian, S. Mao, W. Tang, X. Yang, Software defined mobile network security. Mob Netw Appl 21(5), 729–743 (2016)

    Article  Google Scholar 

  8. Internet source – www.ericsson.com

  9. M. Liyanage, I. Ahmad, A. B. Abro, A. Gurtov, M. Ylianttila (eds.), A Comprehensive Guide to 5G Security (Wiley, Hoboken, 2018)

    Google Scholar 

  10. V.-G. Nguyen, A. Brunstrom, K.-J. Grinnemo, J. Taheri, 5G mobile networks -requirements, enabling technologies, and research activities, in A Comprehensive Guide to 5G Security, (Wiley). https://www.etsi.org/etsi-security-week-2017/5g-security

    Google Scholar 

  11. W. El-Beaino, A.M. El-Hajj, Z. Dawy, On radio network planning for next generation 5G networks: A case study, in International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, 2015, pp. 1–6. https://doi.org/10.1109/ICCSPA.2015.7081315

    Google Scholar 

  12. Y. Elias, Z. Dawy, LTE radio network planning with Het-Nets: BS placement optimization using simulated annealing, in MELECON 2014–2014 17th IEEE Mediterranean Electro-Technical Conference, 2014

    Google Scholar 

  13. C.Y. Lee, H.G. Kang, Cell planning with capacity expansion in mobile communications: A Tabu search approach. IEEE Trans. Veh. Technol. 49(5), 1678–1691 (2000)

    Article  Google Scholar 

  14. Internet Source – hal.inria.fr

  15. Z. Ribeiro, L.A. DaSilva, A framework for the dimensioning of broadband mobile networks supporting wireless internet services. IEEE Wirel. Commun. 9(3), 6–13 (2002)

    Article  Google Scholar 

  16. K. Tutschku, P. Tran-Gia, Spatial traffic estimation and characterization for mobile communication network design. IEEE J. Sel. Areas Commun. 16(5), 804–811 (1998)

    Article  Google Scholar 

  17. R. Pattuelli, V. Zingarelli, Precision of the estimation of area coverage by planning tools in cellular systems. IEEE Pers. Commun. 7(3), 50–53 (2000)

    Article  Google Scholar 

  18. A. Taufique et al., Planning wireless cellular networks of future: Outlook, challenges and opportunities. IEEE Access 5, 4821–4845 (2017)

    Article  Google Scholar 

  19. Internet source – 5g.ieee.org

  20. Internet source – pubs.sciepub.com

  21. L. Hermann, MIMO OFDM space time coding – spatial multiplexing, increasing performance and spectral efficiency in wireless systems, Part I technical basis (Technical report), 2007

    Google Scholar 

  22. A. Agarwal, G. Misra, K. Agarwal, The 5th generation mobile wireless networks – key concepts, network architecture and challenges. Am. J Electr Electron Eng 3(2), 22–28 (2015)

    Google Scholar 

  23. Xiaowei Zhang Detecon International GmbH, Cologne, Germany, Andreas Kunz Lenovo, Oberursel, Germany, Stefan Schröder T-Systems International GmbH, Bonn, Germany. 2017 IEEE Conference on Standards for Communications and Networking (CSCN)-Overview of 5G security in 3GPP (2017).

    Google Scholar 

  24. Internet Source – www.nosmut.com

  25. Internet source – tamarin-prover.github.io

  26. B. Schmidt, Formal Analysis of Key Exchange Protocols and Physical Protocols, PhD Thesis, ETH Zurich, 2012

    Google Scholar 

  27. S. Meier, Advancing Automated Security Protocol Verification, PhD Thesis, ETH Zurich, 2013

    Google Scholar 

  28. Internet source – www.phylaws-ict.org

  29. N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, M. Di Renzo, Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag. 53, 20 (2015)

    Article  Google Scholar 

  30. Internet source – www.faqs.org

  31. M. Baldi, G. Ricciutelli, N. Maturo, F. Chiaraluce, Performance assessment and design of finite length LDPC codes for the Gaussian wiretap channel, in Proc. Int. Conf. Commun. (ICC’2015), London, June 2015, pp. 435–440

    Google Scholar 

  32. H. Mahdavifar, A. Vardy, Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans. Inf. Theory 57, 6428–6443 (2011)

    Article  MathSciNet  Google Scholar 

  33. Y. Wu, R. Schober, D.W.K. Ng, C. Xiao, G. Caire, Secure massive MIMO transmission with an active eavesdropper. IEEE Trans. Inf. Theory, 1–22 (2016)

    Google Scholar 

  34. K. Guo, Y. Guo, G. Ascheid, Security constrained power allocation in MU-massive MIMO with distributed antennas. IEEE Trans. Wireless Commun. 15(12), 8139–8153 (2016)

    Article  Google Scholar 

  35. Y. Zhang, A. Liu, C. Gong, G. Yang, S. Yang, Polar-LDPC concatenated coding for the AWGN wiretap channel. IEEE Commun. Lett. 18, 1683–1686 (2014)

    Article  Google Scholar 

  36. Y. Wu, R. Schober, D.W.K. Ng, C. Xiao, G. Caire, Secure massive MIMO transmission in the presence of an active eavesdropper, in 2015 IEEE International Conference on Communications (ICC), 2015

    Google Scholar 

  37. T.T. Do, H.Q. Ngo, T.Q. Duong, T.J. Oechtering, M. Skoglund, Massive MIMO pilot retransmission strategies for robustification against jamming. IEEE Wireless Commun. Lett. 6(1), 58–61 (2017)

    Google Scholar 

  38. Internet source – www.scientificamerican.com

  39. Y. Wu, A. Khisti, C. Xiao, G. Caire, K.-K. Wong, X. Gao, A survey of physical layer security techniques for 5G wireless networks and challenges. IEEE J Sel. Areas Commun. 36(4), 679–695 (2018)

    Article  Google Scholar 

  40. D.B. Rawat, K. Neupane, M. Song, A novel algorithm for secrecy rate analysis in massive MIMO system with target SINR requirement, in Proc. INFOCOM’2016, San Francisco, April 2016, pp. 1–6

    Google Scholar 

  41. H.-M. Wang, T.-X. Zheng, Physical Layer Security in Random Cellular Networks (Springer, Singapore, 2016)

    Book  Google Scholar 

  42. Z. Ding, Z. Zhao, M. Peng, H.V. Poor, On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans. Commun. 65(7), 3151–3163 (2017)

    Article  Google Scholar 

  43. G. Zheng, I. Krikidis, J. Li, A.P. Petropulu, B. Ottersten, Improving physical layer secrecy using full-duplex jamming receivers. IEEE Trans. Signal Process. 61, 4962–4974 (2013)

    Article  MathSciNet  Google Scholar 

  44. Wireless Networks, Springer, 2016. https://www.cs.cmu.edu/~prs/wirelessS16/

  45. G. Chen, Y. Gong, P. Xiao, J.A. Chambers, Physical layer network security in the full- duplex relay system. IEEE Trans. Inf. Forensics Secur. 10(3), 574–583 (2015)

    Article  Google Scholar 

  46. L. Li, Z. Chen, D. Zhang, J. Fang, A full-duplex Bob in the MIMO Gaussian wiretap channel: Scheme and performance. IEEE Signal Process Lett. 23, 107–111 (2016)

    Article  Google Scholar 

  47. Z.H. Awan, A. Zaidi, L. Vandendorpe, Multi access channel with partially cooperating encoders and security constraints. IEEE Trans. Inf. Forensics Secur. 8, 1243 (2013)

    Article  Google Scholar 

  48. F. Zhu, F. Gao, M. Yao, H. Zou, Joint information and jamming-beam forming for physical layer security with full duplex base station. IEEE Trans. Signal Process. 64(12), 6391–6401 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sriram, P.P., Wang, HC., Jami, H.G., Srinivasan, K. (2019). 5G Security: Concepts and Challenges. In: Jayakody, D., Srinivasan, K., Sharma, V. (eds) 5G Enabled Secure Wireless Networks . Springer, Cham. https://doi.org/10.1007/978-3-030-03508-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03508-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03507-5

  • Online ISBN: 978-3-030-03508-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics