Skip to main content

Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis

  • Chapter
  • First Online:
HIV/AIDS-Associated Viral Oncogenesis

Part of the book series: Cancer Treatment and Research ((CTAR,volume 177))

Abstract

Herpesvirus-induced disease is one of the most lethal factors which leads to high mortality in HIV/AIDS patients. EBV, also known as human herpesvirus 4, can transform naive B cells into immortalized cells in vitro through the regulation of cell cycle, cell proliferation, and apoptosis. EBV infection is associated with several lymphoma and epithelial cancers in humans, which occurs at a much higher rate in immune deficient individuals than in healthy people, demonstrating that the immune system plays a vital role in inhibiting EBV activities. EBV latency infection proteins can mimic suppression cytokines or upregulate PD-1 on B cells to repress the cytotoxic T cells response. Many malignancies, including Hodgkin Lymphoma and non-Hodgkin’s lymphomas occur at a much higher frequency in EBV positive individuals than in EBV negative people during the development of HIV infection. Importantly, understanding EBV pathogenesis at the molecular level will aid the development of novel therapies for EBV-induced diseases in HIV/AIDS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accardi R, Fathallah I, Gruffat H, Mariggio G, Le Calvez-Kelm F, Voegele C, Bartosch B, Hernandez-Vargas H, McKay J, Sylla BS, Manet E, Tommasino M (2013) Epstein-Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein ΔNp73α. PLoS Pathog 9:e1003186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allday MJ (2013) EBV finds a polycomb-mediated, epigenetic solution to the problem of oncogenic stress responses triggered by infection. Front Genet 4:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allday MJ, Bazot Q, White RE (2015) The EBNA3 family: two oncoproteins and a tumour suppressor that are central to the biology of EBV in B cells. In: Epstein Barr virus, Vol 2: one Herpes virus: many diseases, 391. pp 61–117

    Google Scholar 

  4. Aman P, Vongabain A (1990) An Epstein-Barr virus immortalization associated gene segment interferes specifically with the IFN-induced anti-proliferative response in human B-lymphoid cell-lines. EMBO J 9:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderton E, Yee J, Smith P, Crook T, White RE, Allday MJ (2008) Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. Oncogene 27:421–433

    Article  CAS  PubMed  Google Scholar 

  6. Bai M, Skyrlas A, Agnantis NJ, Kamina S, Tsanou E, Grepi C, Galani V, Kanavaros P (2004) Diffuse large B-cell lymphomas with germinal center B-cell-like differentiation immunophenotypic profile are associated with high apoptotic index, high expression of the proapoptotic proteins bax, bak and bid and low expression of the antiapoptotic protein Bcl-Xl. Mod Pathol 17:847–856

    Article  CAS  PubMed  Google Scholar 

  7. Bajaj BG, Murakami M, Cai Q, Verma SC, Lan K, Robertson ES (2008) Epstein-Barr virus nuclear antigen 3C interacts with and enhances the stability of the c-Myc oncoprotein. J Virol 82:4082–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bajaj BG, Murakami M, Robertson ES (2007) Molecular biology of EBV in relationship to aids-associated oncogenesis. Cancer Treat Res 133:141–162

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee S, Lu J, Cai QL, Saha A, Jha HC, Dzeng RK, Robertson ES (2013) The EBV latent antigen 3C inhibits apoptosis through targeted regulation of interferon regulatory factors 4 and 8. PLoS Pathog 9

    Google Scholar 

  10. Banerjee S, Lu J, Cai QL, Sun ZG, Jha HC, Robertson ES (2014) EBNA3C augments Pim-1 mediated phosphorylation and degradation of P21 to promote B-cell proliferation. PLoS Pathog 10

    Google Scholar 

  11. Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC (2016) The modulation of apoptotic pathways by gammaherpesviruses. Front Microbiol 7:585

    PubMed Central  PubMed  Google Scholar 

  12. Bazot Q, Deschamps T, Tafforeau L, Siouda M, Leblanc P, Harth-Hertle ML, Rabourdin-Combe C, Lotteau V, Kempkes B, Tommasino M, Gruffat H, Manet E (2014) Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1. Nucleic Acids Res 42:9700–9716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhatt S, Ashlock BM, Natkunam Y, Sujoy V, Chapman JR, Ramos JC, Mesri EA, Lossos IS (2013) CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood 122:1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhattacharjee S, Ghosh Roy S, Bose P, Saha A (2016) Role of EBNA-3 family proteins in EBV associated B-cell lymphomagenesis. Front Microbiol 7:457

    Google Scholar 

  15. Bibas M, Antinori A (2009) EBV and HIV-related lymphoma. Mediterr J Hematol Infect Dis 1:e2009032

    PubMed Central  PubMed  Google Scholar 

  16. Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen P, Kurilla MG, Frappier L, Rickinson A (1997) Human Cd8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7:791–802

    Article  CAS  PubMed  Google Scholar 

  17. Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M (1999) Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of P27. EMBO J 18:5321–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burkitt DP (1969) Etiology of Burkitt’s lymphoma–an alternative hypothesis to a vectored virus. J Natl Cancer Inst 42:19–28

    CAS  PubMed  Google Scholar 

  19. Cahir-McFarland ED, Davidson DM, Schauer SL, Duong J, Kieff E (2000) NF-κB inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci U S A 97:6055–6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai Q, Guo Y, Xiao B, Banerjee S, Saha A, Lu J, Glisovic T, Robertson ES (2011) Epstein-Barr virus nuclear antigen 3C stabilizes Gemin3 to block P53-mediated apoptosis. PLoS Pathog 7:e1002418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411

    Article  CAS  PubMed  Google Scholar 

  22. Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D’Souza BN, Tierney RJ, Bell AI, Cahill PA, Walls D (2014) Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor β1-induced B-cell apoptosis. J Virol 88:5001–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carbone A, Gaidano G, Gloghini A, Pastore C, Saglio G, Tirelli U, Dalla-Favera R, Falini B (1997) BCL-6 protein expression in aids-related Non-Hodgkin’s lymphomas: inverse relationship with Epstein-Barr virus-encoded latent membrane protein-1 expression. Am J Pathol 150:155–165

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Carbone A, Gloghini A, Caruso A, De Paoli P, Dolcetti R (2017) The impact of EBV and HIV infection on the microenvironmental Niche underlying Hodgkin lymphoma pathogenesis. Int J Cancer 140:1233–1245

    Article  CAS  PubMed  Google Scholar 

  25. Carbone A, Gloghini A, Larocca LM, Antinori A, Falini B, Tirelli U, Dalla-Favera R, Gaidano G (1999) Human immunodeficiency virus-associated Hodgkin’s disease derives from post-germinal center B cells. Blood 93:2319–2326

    CAS  PubMed  Google Scholar 

  26. Carbone A, Vaccher E, Gloghini A, Pantanowitz L, Abayomi A, de Paoli P, Franceschi S (2014) Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat Rev Clin Oncol 11:223–238

    Article  CAS  PubMed  Google Scholar 

  27. Castillo JJ, Bibas M, Miranda RN (2015) The biology and treatment of plasmablastic lymphoma. Blood 125:2323–2330

    Article  CAS  PubMed  Google Scholar 

  28. Cesarman E (2014) Gammaherpesviruses and lymphoproliferative disorders. Annu Rev Pathol 9:349–372

    Article  CAS  PubMed  Google Scholar 

  29. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in aids-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191

    Article  CAS  PubMed  Google Scholar 

  30. Chen J (2012) Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications. World J Virol 1:154–161

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen YB, Rahemtullah A, Hochberg E (2007) Primary effusion lymphoma. Oncologist 12:569–576

    Article  PubMed  Google Scholar 

  32. Colomo L, Lopez-Guillermo A, Perales M, Rives S, Martinez A, Bosch F, Colomer D, Falini B, Montserrat E, Campo E (2003) Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood 101:78–84

    Article  CAS  PubMed  Google Scholar 

  33. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, Bhagat G, Chadburn A, Dalla-Favera R, Pasqualucci L (2009) Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cotter MA, Robertson ES (2000) Modulation of histone acetyltransferase activity through interaction of Epstein-Barr nuclear antigen 3C with prothymosin alpha. Mol Cell Biol 20:5722–5735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deng Z, Lezina L, Chen CJ, Shtivelband S, So W, Lieberman PM (2002) Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 9:493–503

    Article  CAS  PubMed  Google Scholar 

  36. Dheekollu J, Lieberman PM (2011) The replisome pausing factor timeless is required for episomal maintenance of latent Epstein-Barr virus. J Virol 85:5853–5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong HY, Scadden DT, de Leval L, Tang Z, Isaacson PG, Harris NL (2005) Plasmablastic lymphoma in HIV-positive patients: an aggressive Epstein-Barr virus-associated extramedullary plasmacytic neoplasm. Am J Surg Pathol 29:1633–1641

    Article  PubMed  Google Scholar 

  38. Dutton A, Woodman CB, Chukwuma MB, Last JI, Wei W, Vockerodt M, Baumforth KR, Flavell JR, Rowe M, Taylor AM, Young LS, Murray PG (2007) Bmi-1 Is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood 109:2597–2603

    Article  CAS  PubMed  Google Scholar 

  39. Eliopoulos AG, Waites ER, Blake SM, Davies C, Murray P, Young LS (2003) TRAF1 is a critical regulator of JNK signaling by the TRAF-binding domain of the Epstein-Barr virus-encoded latent infection membrane protein 1 but not CD40. J Virol 77:1316–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  42. Everly DN Jr, Mainou BA, Raab-Traub N (2004) Induction of Id1 and Id3 by latent membrane protein 1 of Epstein-Barr virus and regulation of P27/Kip and cyclin-dependent kinase 2 in rodent fibroblast transformation. J Virol 78:13470–13478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fathallah I, Parroche P, Gruffat H, Zannetti C, Johansson H, Yue JP, Manet E, Tommasino M, Sylla BS, Hasan UA (2010) EBV latent membrane protein 1 is a negative regulator of TLR9. J Immunol 185:6439–6447

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Finke J, Fritzen R, Ternes P, Trivedi P, Bross KJ, Lange W, Mertelsmann R, Dolken G (1992) Expression of Bcl-2 in Burkitt’s lymphoma cell lines: induction by latent Epstein-Barr virus genes. Blood 80:459–469

    CAS  PubMed  Google Scholar 

  46. Fish K, Chen J, Longnecker R (2014) Epstein-Barr virus latent membrane protein 2A enhances Myc-driven cell cycle progression in a mouse model of B lymphoma. Blood 123:530–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flinn IW, Ambinder RF (1996) Aids primary central nervous system lymphoma. Curr Opin Oncol 8:373–376

    Article  CAS  PubMed  Google Scholar 

  48. Frappier L (2012) EBNA1 and host factors in Epstein-Barr virus latent DNA replication. Curr Opin Virol 2:733–739

    Article  CAS  PubMed  Google Scholar 

  49. Garibal J, Hollville E, Bell AI, Kelly GL, Renouf B, Kawaguchi Y, Rickinson AB, Wiels J (2007) Truncated form of the Epstein-Barr virus protein EBNA-LP protects against caspase-dependent apoptosis by inhibiting protein phosphatase 2A. J Virol 81:7598–7607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geiger TR, Martin JM (2006) The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively affects Tyk2 phosphorylation and interferon signaling in human B cells. J Virol 80:11638–11650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C, Zeidler R, Scheffer B, Ueffing M, Hammerschmidt W (1999) Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates stat proteins. EMBO J 18:3064–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giulino L, Mathew S, Ballon G, Chadburn A, Barouk S, Antonicelli G, Leoncini L, Liu YF, Gogineni S, Tam W, Cesarman E (2011) A20 (TNFAIP3) genetic alterations in EBV-associated aids-related lymphoma. Blood 117:4852–4854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goedert JJ, Cote TR, Virgo P, Scoppa SM, Kingma DW, Gail MH, Jaffe ES, Biggar RJ (1998) Spectrum of aids-associated malignant disorders. Lancet 351:1833–1839

    Article  CAS  PubMed  Google Scholar 

  54. Grogg KL, Miller RF, Dogan A (2007) Hiv infection and lymphoma. J Clin Pathol 60:1365–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RM, Paul WE (2002) CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat Med 8:319–323

    Article  CAS  PubMed  Google Scholar 

  56. Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A 106:2313–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gruhne B, Sompallae R, Masucci MG (2009) Three Epstein-Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene 28:3997–4008

    Article  CAS  PubMed  Google Scholar 

  58. Guasparri I, Bubman D, Cesarman E (2008) EBV LMP2A affects LMP1-mediated NF-κB signaling and survival of lymphoma cells by regulating TRAF2 expression. Blood 111:3813–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Halder S, Murakami M, Verma SC, Kumar P, Yi F, Robertson ES (2009) Early events associated with infection of Epstein-Barr virus infection of primary B-cells. PLoS ONE 4:e7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Han I, Harada S, Weaver D, Xue Y, Lane W, Orstavik S, Skalhegg B, Kieff E (2001) EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol 75:2475–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hipfner DR, Cohen SM (2004) Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 5:805–815

    Article  CAS  PubMed  Google Scholar 

  62. Ivers LC, Kim AY, Sax PE (2004) Predictive value of polymerase chain reaction of cerebrospinal fluid for detection of Epstein-Barr virus to establish the diagnosis of HIV-related primary central nervous system lymphoma. Clin Infect Dis 38:1629–1632

    Article  PubMed  Google Scholar 

  63. Jenner RG, Maillard K, Cattini N, Weiss RA, Boshoff C, Wooster R, Kellam P (2003) Kaposi’s Sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile. Proc Natl Acad Sci U S A 100:10399–10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jha HC, Mahadesh Prasad AJ, Saha A, Banerjee S, Lu J, Robertson ES (2014) Epstein-Barr virus essential antigen EBNA3C attenuates H2AX expression. J Virol 88:3776–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jha HC, Lu J, Saha A, Cai Q, Banerjee S, Prasad MA, Robertson ES (2013) EBNA3C-mediated regulation of aurora kinase B contributes to Epstein-Barr virus-induced B-cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases. J Virol 87:12121–12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jha HC, Pei Y, Robertson ES (2016) Epstein-Barr virus: diseases linked to infection and transformation. Front Microbiol 7:1602

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B (1999) The proto-oncogene c-Myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol 73:4481–4484

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Kanegane H, Wakiguchi H, Kanegane C, Kurashige T, Tosato G (1997) Viral interleukin-10 in chronic active Epstein-Barr virus infection. J Infect Dis 176:254–257

    Article  CAS  PubMed  Google Scholar 

  69. Kashuba E, Mattsson K, Pokrovskaja K, Kiss C, Protopopova M, Ehlin-Henriksson B, Klein G, Szekely L (2003) EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells. Int J Cancer 105:644–653

    Article  CAS  PubMed  Google Scholar 

  70. Kashuba E, Yurchenko M, Szirak K, Stahl J, Klein G, Szekely L (2005) Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein. Exp Cell Res 303:47–55

    CAS  PubMed  Google Scholar 

  71. Kawaguchi Y, Nakajima K, Igarashi M, Morita T, Tanaka M, Suzuki M, Yokoyama A, Matsuda G, Kato K, Kanamori M, Hirai K (2000) Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol 74:10104–10111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaye KM, Izumi KM, Mosialos G, Kieff E (1995) The Epstein-Barr-virus LMP1 cytoplasmic carboxy-terminus is essential for B-lymphocyte transformation—fibroblast cocultivation complements a critical function within the terminal-155 residues. J Virol 69:675–683

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kempkes B, Ling PD (2015) EBNA2 and its coactivator EBNA-LP. Curr Top Microbiol Immunol 391:35–59

    CAS  PubMed  Google Scholar 

  75. Kieser A, Kaiser C, Hammerschmidt W (1999) LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. EMBO J 18:2511–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Knight JS, Lan K, Subramanian C, Robertson ES (2003) Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3a and NCoR in human B-cell lines. J Virol 77:4261–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Knight JS, Sharma N, Kalman DE, Robertson ES (2004) A cyclin-binding motif within the amino-terminal homology domain of EBNA3C binds cyclin a and modulates cyclin a-dependent kinase activity in Epstein-Barr virus-infected cells. J Virol 78:12857–12867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Knight JS, Sharma N, Robertson ES (2005) Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A 102:18562–18566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Knight JS, Sharma N, Robertson ES (2005) SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen. Mol Cell Biol 25:1749–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kohlhof H, Hampel F, Hoffmann R, Burtscher H, Weidle UH, Holzel M, Eick D, Zimber-Strobl U, Strobl LJ (2009) Notch1, Notch2, and Epstein-Barr virus-encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein-Barr virus-infected B cells. Blood 113:5506–5515

    Article  CAS  PubMed  Google Scholar 

  81. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N (1998) Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A 95:11963–11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lam N, Sugden B (2003) CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal 15:9–16

    Article  CAS  PubMed  Google Scholar 

  83. Lambert SL, Martinez OM (2007) Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 179:8225–8234

    Article  CAS  PubMed  Google Scholar 

  84. Laurence J, Astrin SM (1991) Human immunodeficiency virus induction of malignant transformation in human B lymphocytes. Proc Natl Acad Sci U S A 88:7635–7639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Laux G, Perricaudet M, Farrell PJ (1988) A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J 7:769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leonard S, Wei WB, Anderton J, Vockerodt M, Rowe M, Murray PG, Woodman CB (2011) Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin’s lymphoma. J Virol 85:9568–9577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leventaki V, Rodic V, Tripp SR, Bayerl MG, Perkins SL, Barnette P, Schiffman JD, Miles RR (2012) TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases. Br J Haematol 158:763–771

    Article  CAS  PubMed  Google Scholar 

  88. Lieberman PM, Hu J, Renne R (2007) Maintenance and replication during latency. In Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  89. Lim T, Kim SJ, Kim K, Lee JI, Lim DH, Lee DJ, Baek KK, Lee HY, Han B, Uhm JE, Ko YH, Kim WS (2011) Primary CNS lymphoma other than DLBCL: a descriptive analysis of clinical features and treatment outcomes. Ann Hematol 90:1391–1398

    Article  PubMed  PubMed Central  Google Scholar 

  90. Linke-Serinsoz E, Fend F, Quintanilla-Martinez L (2017) Human immunodeficiency virus (HIV) and Epstein-Barr Virus (EBV) related lymphomas, pathology view point. Semin Diagn Pathol 34(4):352–363

    Article  PubMed  Google Scholar 

  91. Lu F, Chen HS, Kossenkov AV, DeWispeleare K, Won KJ, Lieberman PM (2016) EBNA2 drives formation of new chromosome binding sites and target genes for B-cell master regulatory transcription factors RBP-Jk and EBF1. PLoS Pathog 12:e1005339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu F, Wikramasinghe P, Norseen J, Tsai K, Wang P, Showe L, Davuluri RV, Lieberman PM (2010) Genome-wide analysis of host-chromosome binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA1). Virol J 7:262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu JJY, Chen JY, Hsu TY, Yu WCY, Su IJ, Yang CS (1997) Cooperative interaction between Bcl-2 and Epstein-Barr virus latent membrane protein 1 in the growth transformation of human epithelial cells. J Gen Virol 78:2975–2985

    Article  CAS  PubMed  Google Scholar 

  94. Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R, Wasik MA, Middeldorp J, Robertson ES (2011) Epstein-Barr virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410:64–75

    Article  CAS  PubMed  Google Scholar 

  95. Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, Gumperz JE, Kenney SC (2016) PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog 12:e1005642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mannick JB, Tong X, Hemnes A, Kieff E (1995) The Epstein-Barr virus nuclear antigen leader protein associates with Hsp72/Hsc73. J Virol 69:8169–8172

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Martin KA, Lupey LN, Tempera I (2016) Epstein-Barr virus oncoprotein LMP1 mediates epigenetic changes in host gene expression through PARP1. J Virol 90:8520–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maruo S, Wu Y, Ishikawa S, Kanda T, Iwakiri D, Takada K (2006) Epstein-Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells. Proc Natl Acad Sci U S A 103:19500–19505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maruo S, Wu Y, Ito T, Kanda T, Kieff ED, Takada K (2009) Epstein-Barr virus nuclear protein EBNA3C residues critical for maintaining lymphoblastoid cell growth. Proc Natl Acad Sci U S A 106:4419–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Masy E, Adriaenssens E, Montpellier C, Crepieux P, Mougel A, Quatannens B, Goormachtigh G, Faumont N, Meggetto F, Auriault C, Groux H, Coll J (2002) Human monocytic cell lines transformed in vitro by Epstein-Barr virus display a type II latency and LMP-1-dependent proliferation. J Virol 76:6460–6472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McFadden K, Hafez AY, Kishton R, Messinger JE, Nikitin PA, Rathmell JC, Luftig MA (2016) Metabolic stress is a barrier to Epstein-Barr virus-mediated B-cell immortalization. Proc Natl Acad Sci U S A 113:E782–E790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McHugh D, Caduff N, Barros MHM, Ramer PC, Raykova A, Murer A, Landtwing V, Quast I, Styles CT, Spohn M, Fowotade A, Delecluse HJ, Papoudou-Bai A, Lee YM, Kim JM, Middeldorp J, Schulz TF, Cesarman E, Zbinden A, Capaul R, White RE, Allday MJ, Niedobitek G, Blackbourn DJ, Grundhoff A, Munz C (2017) Persistent KSHV infection increases EBV-associated tumor formation in vivo via enhanced EBV lytic gene expression. Cell Host Microbe 22:61–73

    Article  CAS  Google Scholar 

  103. Merlo A, Turrini R, Dolcetti R, Martorelli D, Muraro E, Comoli P, Rosato A (2010) The interplay between Epstein-Barr virus and the immune system: a rationale for adoptive cell therapy of EBV-related disorders. Haematologica 95:1769–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Murakami M, Lan K, Subramanian C, Robertson ES (2005) Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 79:1559–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Murornoto R, Ikeda O, Okabe K, Togi S, Kamitani S, Fujimuro M, Harada S, Oritani K, Matsud T (2009) Epstein-Barr virus-derived EBNA2 regulates STAT3 activation. Biochem Biophys Res Commun 378:439–443

    Article  CAS  Google Scholar 

  106. Nikitin PA, Yan CM, Forte E, Bocedi A, Tourigny JP, White RE, Allday MJ, Patel A, Dave SS, Kim W, Hu K, Guo J, Tainter D, Rusyn E, Luftig MA (2010) An ATM/Chk2-Mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Olszewski AJ, Fallah J, Castillo JJ (2016) Human immunodeficiency virus-associated lymphomas in the antiretroviral therapy era: analysis of the national cancer data base. Cancer 122:2689–2697

    Article  CAS  PubMed  Google Scholar 

  108. Parker GA, Touitou R, Allday MJ (2000) Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 19:700–709

    Article  CAS  PubMed  Google Scholar 

  109. Paschos K, Parker GA, Watanatanasup E, White RE, Allday MJ (2012) BIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV. Nucleic Acids Res 40:7233–7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ (2009) Epstein-Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog 5(6):e1000492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pegman PM, Smith SM, D’Souza BN, Loughran ST, Maier S, Kempkes B, Cahill PA, Simmons MJ, Gelinas C, Walls D (2006) Epstein-Barr virus nuclear antigen 2 trans-activates the cellular antiapoptotic Bfl-1 gene by a CBF1/RBPJk-dependent pathway. J Virol 80:8133–8144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pei Y, Banerjee S, Jha HC, Sun Z, Robertson ES (2017) An essential EBV latent antigen 3C binds Bcl6 for targeted degradation and cell proliferation. PLoS Pathog 13:e1006500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pei YG, Banerjee S, Sun ZG, Jha HC, Saha A, Robertson ES (2016) EBV nuclear antigen 3C mediates regulation of E2F6 to Inhibit E2F1 transcription and promote cell proliferation. PLoS Pathog 12(8):e1005844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Piriou E, van Dort K, Nanlohy NM, van Oers MH, Miedema F, van Baarle D (2005) Loss of EBNA1-specific memory Cd4+ and Cd8+ T cells in HIV-infected patients progressing to aids-related non-hodgkin lymphoma. Blood 106:3166–3174

    Article  CAS  PubMed  Google Scholar 

  116. Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A (2011) Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenetics 2:233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Portis T, Longnecker R (2004) Epstein-Barr Virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 23:8619–8628

    Article  CAS  PubMed  Google Scholar 

  118. Price AM, Dai J, Bazot Q, Patel L, Nikitin PA, Djavadian R, Winter PS, Salinas CA, Barry AP, Wood KC, Johannsen EC, Letai A, Allday MJ, Luftig MA (2017) Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. Elife 6:e22509

    Google Scholar 

  119. Price AM, Luftig MA (2014) Dynamic Epstein-Barr virus gene expression on the path to B-Cell transformation. Adv Virus Res 88(88):279–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Price AM, Tourigny JP, Forte E, Salinas RE, Dave SS, Luftig MA (2012) Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation. J Virol 86:11096–11106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ressing ME, van Gent M, Gram AM, Hooykaas MJ, Piersma SJ, Wiertz EJ (2015) Immune evasion by Epstein-Barr virus. Curr Top Microbiol Immunol 391:355–381

    CAS  PubMed  Google Scholar 

  122. Robertson ES, Grossman S, Johannsen E, Miller C, Lin J, Tomkinson B, Kieff E (1995) Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol 69:3108–3116

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Robertson ES, Lin J, Kieff E (1996) The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ (Kappa). J Virol 70:3068–3074

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Roy SG, Robertson ES, Saha A (2016) Epigenetic impact on EBV associated B-cell lymphomagenesis. Biomolecules 6(4):46

    Article  CAS  PubMed Central  Google Scholar 

  125. Saha A, Halder S, Upadhyay SK, Lu J, Kumar P, Murakami M, Cai QL, Robertson ES (2011) Epstein-Barr virus nuclear antigen 3C facilitates G1-S transition by stabilizing and enhancing the function of cyclin D1. PLoS Pathog 7(2):e1001275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Saha A, Jha HC, Upadhyay SK, Robertson ES (2015) Epigenetic silencing of tumor suppressor genes during in vitro Epstein-Barr virus infection. Proc Natl Acad Sci U S A 112:E5199–E5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Saha A, Lu J, Morizur L, Upadhyay SK, Prasad AJM, Robertson ES (2012) E2F1 mediated apoptosis induced by the DNA damage response is blocked by EBV nuclear antigen 3C in lymphoblastoid cells. PLoS Pathog 8(3):e1002573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saha A, Murakami M, Kumar P, Bajaj B, Sims K, Robertson ES (2009) Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated P53 ubiquitination and degradation by deubiquitinating Mdm2. J Virol 83:4652–4669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saha A, Robertson ES (2011) Epstein-Barr virus-associated B-cell lymphomas: pathogenesis and clinical outcomes. Clin Cancer Res 17:3056–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sakai T, Taniguchi Y, Tamura K, Minoguchi S, Fukuhara T, Strobl LJ, Zimber-Strobl U, Bornkamm GW, Honjo T (1998) Functional replacement of the intracellular region of the Notch1 receptor by Epstein-Barr virus nuclear antigen 2. J Virol 72:6034–6039

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Sample J, Liebowitz D, Kieff E (1989) Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol 63:933–937

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sanchez EL, Lagunoff M (2015) Viral activation of cellular metabolism. Virology 479–480:609–618

    Article  CAS  PubMed  Google Scholar 

  133. Scala G, Quinto I, Ruocco MR, Mallardo M, Ambrosino C, Squitieri B, Tassone P, Venuta S (1993) Epstein-Barr virus nuclear antigen 2 transactivates the long terminal repeat of human immunodeficiency virus type 1. J Virol 67:2853–2861

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM (2014) Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med 4(2):a014282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Seo SY, Kim EO, Jang KL (2008) Epstein-Barr virus latent membrane protein 1 suppresses the growth-inhibitory effect of retinoic acid by inhibiting retinoic acid receptor-β2 expression via DNA methylation. Cancer Lett 270:66–76

    Article  CAS  PubMed  Google Scholar 

  136. Shah KM, Stewart SE, Wei W, Woodman CBJ, O’Neil JD, Dawson CW, Young LS (2009) The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 28:3903–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shair KH, Bendt KM, Edwards RH, Bedford EC, Nielsen JN, Raab-Traub N (2007) EBV latent membrane protein 1 activates Akt, NFκB, and Stat3 in B cell lymphomas. PLoS Pathog 3:e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Skalska L, White RE, Franz M, Ruhmann M, Allday MJ (2010) Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 6:e1000951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Skalska L, White RE, Parker GA, Turro E, Sinclair AJ, Paschos K, Allday MJ (2013) Induction of p16(INK4A) is the major barrier to proliferation when Epstein-Barr Virus (EBV) transforms primary B cells into lymphoblastoid cell lines. PLoS Pathog 9:e1003187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tempera I, Klichinsky M, Lieberman PM (2011) EBV latency types adopt alternative chromatin conformations. PLoS Pathog 7:e1002180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82

    Article  CAS  PubMed  Google Scholar 

  142. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350:1328–1337

    Article  CAS  PubMed  Google Scholar 

  143. Timms JM, Bell A, Flavell JR, Murray PG, Rickinson AB, Traverse-Glehen A, Berger F, Delecluse HJ (2003) Target cells of Epstein-Barr-Virus (EBV)-positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin’s lymphoma. Lancet 361:217–223

    Article  PubMed  Google Scholar 

  144. Tomkinson B, Robertson E, Kieff E (1993) Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67:2014–2025

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS (2002) The Epstein-Barr Virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A 99:10084–10089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tsimbouri P, Drotar ME, Coy JL, Wilson JB (2002) Bcl-Xl and rag genes are induced and the response to Il-2 enhanced in EμEBNA-1 transgenic mouse lymphocytes. Oncogene 21:5182–5187

    Article  CAS  PubMed  Google Scholar 

  147. Vaysberg M, Lambert SL, Krams SM, Martinez OM (2009) Activation of the JAK/STAT pathway in Epstein Barr Virus+-associated posttransplant lymphoproliferative disease: role of interferon-gamma. Am J Transplant 9:2292–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wheaton WW, Chandel NS (2011) Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol 300:C385–C393

    Article  CAS  PubMed  Google Scholar 

  149. Wood CD, Veenstra H, Khasnis S, Gunnell A, Webb HM, Shannon-Lowe C, Andrews S, Osborne CS, West MJ (2016) Myc activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. Elife 5:e18270

    Google Scholar 

  150. Wood VHJ, O’Neil JD, Wei W, Stewart SE, Dawson CW, Young LS (2007) Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFβ signaling pathways. Oncogene 26:4135–4147

    Article  CAS  PubMed  Google Scholar 

  151. Wu H, Ceccarelli DF, Frappier L (2000) The DNA segregation mechanism of Epstein-Barr virus nuclear antigen 1. EMBO Rep 1:140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xiao L, Hu ZY, Dong X, Tan Z, Li W, Tang M, Chen L, Yang L, Tao Y, Jiang Y, Li J, Yi B, Li B, Fan S, You S, Deng X, Hu F, Feng L, Bode AM, Dong Z, Sun LQ, Cao Y (2014) Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 33:4568–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xie Y, Pittaluga S, Jaffe ES (2015) The histological classification of diffuse large B-cell lymphomas. Semin Hematol 52:57–66

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yang XJ, Han H, De Carvalho DD, Lay FD, Jones PA, Liang GN (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yao QY, Tierney RJ, Croom-Carter D, Dukers D, Cooper GM, Ellis CJ, Rowe M, Rickinson AB (1996) Frequency of multiple Epstein-Barr virus infections in T-cell-immunocompromised individuals. J Virol 70:4884–4894

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Yi F, Saha A, Murakami M, Kumar P, Knight JS, Cai Q, Choudhuri T, Robertson ES (2009) Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology 388:236–247

    Article  CAS  PubMed  Google Scholar 

  157. Young LS, Dawson CW, Eliopoulos AG (2000) The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol 53:238–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Young LS, Yap LF, Murray PG (2016) Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16:789–802

    Article  CAS  PubMed  Google Scholar 

  159. Zhang L, Pagano JS (2000) Interferon regulatory factor 7 is induced by Epstein-Barr virus latent membrane protein 1. J Virol 74:1061–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhao B, Maruo S, Cooper A, Chase MR, Johannsen E, Kieff E, Cahir-McFarland E (2006) RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci U S A 103: 1900–1905

    Article  CAS  Google Scholar 

  161. Zimber-Strobl U, Strobl LJ (2001) EBNA2 and Notch signalling in Epstein-Barr Virus mediated immortalization of B lymphocytes. Semin Cancer Biol 11:423–434

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erle S. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lang, F., Pei, Y., Lamplugh, Z.L., Robertson, E.S. (2019). Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis. In: Meyers, C. (eds) HIV/AIDS-Associated Viral Oncogenesis. Cancer Treatment and Research, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-030-03502-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03502-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03501-3

  • Online ISBN: 978-3-030-03502-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics