Skip to main content

Dementias

  • Chapter
  • First Online:
Atlas of Clinical Neurology

Abstract

Approximately 2 million people in the United States suffer from severe dementia, and an additional 5 million have mild to moderate dementia. As life expectancy and the proportion of older individuals in the population continue to increase, dementia will become an ever more significant health problem, compounded by its effects on the families of those affected. If the course of dementia is not modified by treatment, the number of individuals who will be affected by degenerative dementia in the coming decades will increase dramatically [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenberg BS. Epidemiology of Alzheimer’s disease and other dementing illnesses. J Chronic Dis. 1986;39:1095–104.

    Article  CAS  PubMed  Google Scholar 

  2. Hagnell O, Ojesjo L, Rorsman B. Incidence of dementia in the Lundby study. Neuroepidemiology. 1992;11:61–6.

    Article  PubMed  Google Scholar 

  3. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.

    Google Scholar 

  4. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  5. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–72.

    Article  CAS  PubMed  Google Scholar 

  6. Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain. 2008;131:2957–68.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.

    Article  CAS  PubMed  Google Scholar 

  8. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.

    Article  CAS  PubMed  Google Scholar 

  9. Marsden CD. Assessment of dementia. In: Frederiks JAM, editor. Handbook of clinical neurology, vol. 46. Amsterdam: Elsevier Science Publishers; 1985. p. 221–31.

    Google Scholar 

  10. Albert ML, Feldman RG, Willis AL. The ‘subcortical dementia’ of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1974;37:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cummings JL, Benson DF. Subcortical dementia. Arch Neurol. 1984;41:874–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kaye J, Quinn J. Clinical changes associated with normal aging. In: Clark CM, Trojanowski JQ, editors. Neurodegenerative dementias. New York: McGraw-Hill; 2000.

    Google Scholar 

  13. Petersen RC, Parisi JE, Dickson DW, Johnson KA, Knopman DS, Boeve BF, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol. 2006;63:665–72.

    Article  PubMed  Google Scholar 

  14. Richards M, Stern Y, Mayeux R. Subtle extrapyramidal signs can predict the development of dementia in elderly individuals. Neurology. 1993;43:2184–8.

    Article  CAS  PubMed  Google Scholar 

  15. Chui HC, Lyness SA, Sobel E, Schneider LS. Extrapyramidal signs and psychiatric symptoms predict faster cognitive decline in Alzheimer’s disease. Arch Neurol. 1994;51:676–81.

    Article  CAS  PubMed  Google Scholar 

  16. Petersen RC, Smith GE, Ivnik RJ, Tangalos EG, Schaid DJ, Thibodeau SN, et al. Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. JAMA. 1995;273:1274–8.

    Article  CAS  PubMed  Google Scholar 

  17. Daly E, Zaitchik D, Copeland M, Schmahmann J, Gunther J, Albert M. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol. 2000;57:675–80.

    Article  CAS  PubMed  Google Scholar 

  18. Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology. 1997;49:786–94.

    Article  PubMed  Google Scholar 

  19. Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol. 2000;47:430–9.

    Article  CAS  PubMed  Google Scholar 

  20. Albert MS. Cognitive and neurobiologic markers of early Alzheimer disease. Proc Natl Acad Sci U S A. 1996;93:13547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fox NC, Warrington EK, Seiffer AL, Agnew SK, Rossor MN. Presymptomatic cognitive deficits in individuals at risk of familial Alzheimer’s disease. A longitudinal prospective study. Brain. 1998;121:1631–9.

    Article  PubMed  Google Scholar 

  22. Mahler ME, Cummings JL, Benson DF. Treatable dementias. West J Med. 1987;146:705–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Caine ED. Pseudodementia: current concepts and future directions. Arch Gen Psychiatry. 1981;38:1359–64.

    Article  CAS  PubMed  Google Scholar 

  24. Nussbaum PD. Pseudodementia: a slow death. Neuropsychol Rev. 1994;4:71–90.

    Article  CAS  PubMed  Google Scholar 

  25. Abramowicz M. Drugs that cause psychiatric symptoms. Med Lett. 1993;30:65–70.

    Google Scholar 

  26. Clarfield AM. The reversible dementias: do they reverse? Ann Intern Med. 1988;109:476–86.

    Article  CAS  PubMed  Google Scholar 

  27. Weytingh MD, Bossuyt PMM, van Crevel H. Reversible dementia: more than 10% or less than 1%? A quantitative review. J Neurol. 1995;242:446–71.

    Article  Google Scholar 

  28. Sunderland T, Tariot PN, Cohen RM, Weingartner H, Mueller EA 3rd, Murphy DL. Anticholinergic sensitivity in patients with dementia of the Alzheimer type and age-matched controls. A dose-response study. Arch Gen Psychiatry. 1987;44:418–26.

    Article  CAS  PubMed  Google Scholar 

  29. Blazer DG, Federspiel CF, Ray WA, Schaffner W. The risk of anticholinergic toxicity in the elderly: a study of prescribing practices in two populations. J Gerontol. 1983;38:31–5.

    Article  PubMed  Google Scholar 

  30. Cantu TG, Korek JS. Central nervous system reactions to histamine-2 receptor blockers. Ann Intern Med. 1991;114:1027–34.

    Article  CAS  PubMed  Google Scholar 

  31. Tiraboschi P, Hansen LA, Alford M, Sabbagh MN, Schoos B, Masliah E, et al. Cholinergic dysfunction in diseases with Lewy bodies. Neurology. 2000;54:407–11.

    Article  CAS  PubMed  Google Scholar 

  32. Alexander EM, Wagner EH, Buchner DM, Cain KC, Larson EB. Do surgical brain lesions present as isolated dementia? A population-based study. J Am Geriatr Soc. 1995;43:138–43.

    Article  CAS  PubMed  Google Scholar 

  33. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med. 1965;273:117–26.

    Article  CAS  PubMed  Google Scholar 

  34. Fisher CM. Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology. 1982;32:1358–63.

    Article  CAS  PubMed  Google Scholar 

  35. Wikkelsö C, Andersson H, Blomstrand C, Lindqvist G, Svendsen P. Normal pressure hydrocephalus: predictive value of the cerebrospinal fluid tap-test. Acta Neurol Scand. 1986;73:566–73.

    Article  PubMed  Google Scholar 

  36. Graff-Radford NR, Godersky JC, Jones MP. Variables predicting surgical outcome in symptomatic hydrocephalus in the elderly. Neurology. 1989;39:1601–4.

    Article  CAS  PubMed  Google Scholar 

  37. Benton AL. Neuropsychological assessment. Annu Rev Psychol. 1994;45:1–23.

    Article  CAS  PubMed  Google Scholar 

  38. Jones RD, Tranel D, Benton A, Paulsen J. Differentiating dementia from “pseudodementia” early in the clinical course: utility of neuropsychological tests. Neuropsychology. 1992;6:13–21.

    Article  Google Scholar 

  39. Grabowski TJ, Damasio AR. Definition, clinical features and neuroanatomical basis of dementia. In: Esiri MM, Lee VM-Y, Trojanowski JQ, editors. The neuropathology of dementia. 2nd ed. New York: Cambridge University Press; 2004.

    Google Scholar 

  40. Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF, Marcone A, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology. 2008;71:1227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, et al. Positron emission tomography in Alzheimer’s disease. Neurology. 1986;36:879–87.

    Article  CAS  PubMed  Google Scholar 

  42. Powers WJ, Perlmutter JS, Videen TO, Herscovitch P, Griffeth LK, Royal HD, et al. Blinded clinical evaluation of positron emission tomography for diagnosis of probable Alzheimer’s disease. Neurology. 1992;42:765–70.

    Article  CAS  PubMed  Google Scholar 

  43. Caselli RJ, Jack CR Jr, Petersen RC, Wahner HW, Yanagihara T. Asymmetric cortical degenerative syndromes: clinical and radiologic correlations. Neurology. 1992;42:1462–8.

    Article  CAS  PubMed  Google Scholar 

  44. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

    Article  CAS  PubMed  Google Scholar 

  46. Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer’s Disease”. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiol Aging. 1998;19:109–16.

    Article  Google Scholar 

  47. Galasko D, Clark C, Chang L, Miller B, Green RC, Motter R, Seubert P. Assessment of CSF levels of tau protein in mildly demented patients with Alzheimer’s disease. Neurology. 1997;48:632–5.

    Article  CAS  PubMed  Google Scholar 

  48. Kahle PJ, Jakowec M, Teipel SJ, Hampel H, Petzinger GM, Di Monte DA, et al. Combined assessment of tau and neuronal thread protein in Alzheimer’s disease CSF. Neurology. 2000;54:1498–504.

    Article  CAS  PubMed  Google Scholar 

  49. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34:939–44.

    Article  CAS  PubMed  Google Scholar 

  50. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Levine DN, Lee JM, Fisher CM. The visual variant of Alzheimer’s disease. Neurology. 1993;43:305–13.

    Article  CAS  PubMed  Google Scholar 

  54. Victoroff J, Ross GW, Benson DF, Verity MA, Vinters HV. Posterior cortical atrophy. Neuropathologic correlations. Arch Neurol. 1994;51:269–74.

    Article  CAS  PubMed  Google Scholar 

  55. Joaquim CL, Morris JH, Selkoe DJ. Clinically diagnosed Alzheimer’s disease: autopsy results in 150 cases. Ann Neurol. 1988;24:50–6.

    Article  Google Scholar 

  56. Wade JP, Mirsen TR, Hachinski VC, Fisman M, Lau C, Merskey H. The clinical diagnosis of Alzheimer’s disease. Arch Neurol. 1987;44:24–9.

    Article  CAS  PubMed  Google Scholar 

  57. Mölsä PK, Paljärvi L, Rinne JO, Rinne UK, Säkö E. Validity of clinical diagnosis in dementia: a prospective clinicopathological study. J Neurol Neurosurg Psychiatry. 1985;48:1085–90.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Klatka LA, Schiffer RB, Powers JM, Kazee AM. Incorrect diagnosis of Alzheimer’s disease: a clinicopathologic study. Arch Neurol. 1996;53:35–42.

    Article  CAS  PubMed  Google Scholar 

  59. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349:704–6.

    Article  CAS  PubMed  Google Scholar 

  60. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973–7.

    Article  CAS  PubMed  Google Scholar 

  61. Alzheimer’s Disease Collaborative Group. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet. 1995;11:219–22.

    Article  Google Scholar 

  62. Katzman R, Kawas C. The epidemiology of dementia and Alzheimer disease. In: Terry RD, Katzman R, Bick KL, editors. Alzheimer disease. New York: Raven Press; 1994. p. 105–22.

    Google Scholar 

  63. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80(19):1778–83.

    Article  PubMed  PubMed Central  Google Scholar 

  64. van Duijn CM, Stijnen T, Hofman A. Risk factors for Alzheimer’s disease: overview of the EURODEM collaborative re-analysis of case-control studies. Int J Epidemiol. 1991;20:S4–12.

    Article  PubMed  Google Scholar 

  65. Cummings JL, Vinters HV, Cole GM, Khachaturian ZS. Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology. 1998;51(1 Suppl 1):S2–17.

    Article  CAS  PubMed  Google Scholar 

  66. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci U S A. 1995;92:4725–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Myers RH, Schaefer EJ, Wilson PW, D’Agostino R, Ordovas JM, Espino A, et al. Apolipoprotein E epsilon4 association with dementia in a population-based study: the Framingham study. Neurology. 1996;46:673–7.

    Article  CAS  PubMed  Google Scholar 

  68. Welsh-Bohmer KA, Gearing M, Saunders AM, Roses AD, Mirra S. Apolipoprotein E genotypes in a neuropathological series from the consortium to establish a registry for Alzheimer’s disease. Ann Neurol. 1997;42:319–25.

    Article  CAS  PubMed  Google Scholar 

  69. Breitner JCS. The end of Alzheimer’s disease? Int J Geriatr Psychiatry. 1999;14:577–86.

    Article  CAS  PubMed  Google Scholar 

  70. Hyman BT, Gomez-Isla T, Briggs M, Chung H, Nichols S, Kohout F, Wallace R. Apolipoprotein E and cognitive change in an elderly population. Ann Neurol. 1996;40:55–66.

    Article  CAS  PubMed  Google Scholar 

  71. Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. N Engl J Med. 1998;338:506–11.

    Article  CAS  PubMed  Google Scholar 

  72. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:1977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pickering-Brown SM, Mann DM, Bourke JP, Roberts DA, Balderson D, Burns A, et al. Apolipoprotein E4 and Alzheimer’s disease pathology in Lewy body disease and in other beta-amyloid-forming diseases. Lancet. 1994;343:1155.

    Article  CAS  PubMed  Google Scholar 

  74. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex. 1991;1:103–16.

    Article  CAS  PubMed  Google Scholar 

  75. Jicha GA, Petersen RC, Knopman DS, Boeve BF, Smith GE, Geda YE, et al. Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment. J Neuropathol Exp Neurol. 2006;65:602–9.

    Article  PubMed  Google Scholar 

  76. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  CAS  PubMed  Google Scholar 

  77. Hyman BT, Arriagada PV, McKee AC, Ghika J, Corkin S, Growdon JH. The earliest symptoms of Alzheimer disease: anatomic correlates. Soc Neurosci Abstr. 1991;15:352.

    Google Scholar 

  78. Hof PR, Bierer LM, Perl DP, Delacourte A, Buée L, Bouras C, Morrison JH. Evidence for early vulnerability of the medial and inferior aspects of the temporal lobe in an 82-yearold patient with preclinical signs of dementia. Arch Neurol. 1992;49:946–53.

    Article  CAS  PubMed  Google Scholar 

  79. Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2(8000):1403.

    Article  CAS  PubMed  Google Scholar 

  80. Bartus RT, Dean RLI, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–14.

    Article  CAS  PubMed  Google Scholar 

  81. Coyle JT, Price DL, Delong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science. 1983;219:1184–90.

    Article  CAS  PubMed  Google Scholar 

  82. Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121:2249–57.

    Article  PubMed  Google Scholar 

  83. Hyman BT, Van Hoesen G, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225:1168–70.

    Article  CAS  PubMed  Google Scholar 

  84. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guo JL, Lee VM. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem. 2011;286:15317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI. Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem. 2012;287:19440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73:685–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci. 2013;33:1024–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stancu IC, Vasconcelos B, Ris L, Wang P, Viller A, Peeraer E, et al. Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice. Acta Neuropathol. 2015;129:875–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hof PR, Bouras C, Constantinidis J, Morrison JH. Selective disconnection of specific visual association pathways in cases of Alzheimer’s disease presenting with Balint’s syndrome. J Neuropathol Exp Neurol. 1990;40:168–84.

    Article  Google Scholar 

  91. Tang-Wai DF, Graff-Radford NR, Boeve BF, Dickson DW, Parisi JE, Crook R, et al. Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology. 2004;63:1168–74.

    Article  CAS  PubMed  Google Scholar 

  92. Crutch SJ, Schott JM, Rabinovici GD, Boeve BF, Cappa SF, Dickerson BC, et al. Shining a light on posterior cortical atrophy. Alzheimers Dement. 2013;9:463–5.

    Article  PubMed  Google Scholar 

  93. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2003;9:448–52.

    Article  CAS  PubMed  Google Scholar 

  94. Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–60.

    Article  PubMed  Google Scholar 

  95. Tatemichi TK. How acute brain failure becomes chronic: a view of the mechanisms of dementia related to stroke. Neurology. 1990;40:1652–9.

    Article  CAS  PubMed  Google Scholar 

  96. Tatemichi TK, Desmond DW, Paik M, Figueroa M, Gropen TI, Stern Y, et al. Clinical determinants of dementia related to stroke. Ann Neurol. 1993;33:568–75.

    Article  CAS  PubMed  Google Scholar 

  97. Erkinjuntti T, Hachinski VC. Rethinking vascular dementia. Cerebrovasc Dis. 1993;3:3–23.

    Article  Google Scholar 

  98. Tatemichi TK, Desmond DW, Mayeux R, Paik M, Stern Y, Sano M, et al. Dementia after stroke: baseline frequency, risks, and clinical features in a hospitalized cohort. Neurology. 1992;42:1185–93.

    Article  CAS  PubMed  Google Scholar 

  99. Hebert R, Brayne C. Epidemiology of vascular dementia. Neuroepidemiology. 1995;14:240–57.

    Article  CAS  PubMed  Google Scholar 

  100. Hershey LA, Modic MT, Jaffe DF, Greenough PG. Natural history of the vascular dementias: a prospective study of seven cases. Can J Neurol Sci. 1986;13:559–65.

    Article  CAS  PubMed  Google Scholar 

  101. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997;277:813–7.

    Article  CAS  PubMed  Google Scholar 

  102. Rahimi J, Kovacs GG. Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther. 2014;6:82.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet. 1999;354:919–20.

    Article  CAS  PubMed  Google Scholar 

  104. Lie JT. Primary (granulomatous) angiitis of the central nervous system: a clinicopathologic analysis of 15 new cases and a review of the literature. Hum Pathol. 1992;23:164–71.

    Article  CAS  PubMed  Google Scholar 

  105. Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC, Beekly D, Heyman A. Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, part XV. Neurology. 1996;46:1592–6.

    Article  CAS  PubMed  Google Scholar 

  106. Greenberg SM, Vonsattel JP, Stakes JW, Gruber M, Finklestein SP. The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage. Neurology. 1993;43:2073–9.

    Article  CAS  PubMed  Google Scholar 

  107. Greenberg SM, Finklestein SP, Schaefer PW. Petechial hemorrhages accompanying lobar hemorrhage: detection by gradient-echo MRI. Neurology. 1996;46:1751–4.

    Article  CAS  PubMed  Google Scholar 

  108. Hutchinson M, O’Riordan J, Javed M, Quin E, Macerlaine D, Wilcox T, et al. Familial hemiplegic migraine and autosomal dominant arteriopathy with leukoencephalopathy (CADASIL). Ann Neurol. 1995;38:817–24.

    Article  CAS  PubMed  Google Scholar 

  109. Dichgans M, Mayer M, Uttner I, Brüning R, Müller-Höcker J, Rungger G, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44:731–9.

    Article  CAS  PubMed  Google Scholar 

  110. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  111. The Lund and Manchester Groups. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1994;57:416–8.

    Article  Google Scholar 

  112. Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11:592–8.

    Article  CAS  PubMed  Google Scholar 

  113. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, et al.; Consortium for Frontotemporal Lobar Degeneration. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol. 2007;114:5–22.

    Article  Google Scholar 

  115. Dickson DW, Kouri N, Murray ME, Josephs KA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci. 2011;45:384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119:1–4.

    Article  PubMed  Google Scholar 

  117. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122:111–3.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Onyike CU, Diehl-Schmid J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry. 2013;25:130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tissot R, Constantinidis J, Richard J. Pick’s disease. In: Frederiks JAM, editor. Handbook of clinical neurology, vol. 46. Amsterdam: Elsevier Science Publishers; 1985. p. 233–46.

    Google Scholar 

  120. Boeve BF, Baker M, Dickson DW, Parisi JE, Giannini C, Josephs KA, et al. Frontotemporal dementia and parkinsonism associated with the IVS1 + 1G- >A mutation in progranulin: a clinicopathologic study. Brain. 2006;129:3103–14.

    Article  PubMed  Google Scholar 

  121. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p = linked FTD and ALS. Neuron. 2011;72:245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 1998;21:428–33.

    Article  CAS  PubMed  Google Scholar 

  124. Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol. 1997;41:706–15.

    Article  CAS  PubMed  Google Scholar 

  125. Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 1998;8:387–402.

    Article  CAS  PubMed  Google Scholar 

  126. Bennett P, Bonifati V, Bonuccelli U, Colosimo C, De Mari M, Fabbrini G, et al. Direct genetic evidence for involvement of tau in progressive supranuclear palsy. European Study Group on Atypical Parkinsonism Consortium. Neurology. 1998;51:982–5.

    Article  CAS  PubMed  Google Scholar 

  127. Gearing M, Olson DA, Watts RL, Mirra SS. Progressive supranuclear palsy: neuropathologic and clinical heterogeneity. Neurology. 1994;44:1015–24.

    Article  CAS  PubMed  Google Scholar 

  128. Gibb WRG, Luthert PJ, Marsden CD. Corticobasal degeneration. Brain. 1989;112:1171–92.

    Article  PubMed  Google Scholar 

  129. Boeve BF, Maraganore DM, Parisi JE, Ahlskog JE, Graff-Radford N, Caselli RJ, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology. 1999;53:795–800.

    Article  CAS  PubMed  Google Scholar 

  130. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res Ther. 2014;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Martland H. Punch drunk. JAMA. 1928;91:1103–7.

    Article  Google Scholar 

  133. de Vos RA, Jansen EN, Stam FC, Swaab DF. “Lewy body disease”: clinicopathological correlations in 18 consecutive cases of Parkinson’s disease with and without dementia. Clin Neurol Neurosurg. 1995;97:13–22.

    Article  PubMed  Google Scholar 

  134. Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol. 1993;50:140–8.

    Article  CAS  PubMed  Google Scholar 

  135. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Perry E, McKeith I, Perry R, editors. Dementia with Lewy bodies: clinical, pathologic, and treatment issues. Cambridge: Cambridge University Press; 1996.

    Google Scholar 

  137. Hulette C, Mirra S, Wilkinson W, Heyman A, Fillenbaum G, Clark C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part IX. A prospective cliniconeuropathologic study of Parkinson’s features in Alzheimer’s disease. Neurology. 1995;45:1991–5.

    Article  CAS  PubMed  Google Scholar 

  138. Ditter SM, Mirra SS. Neuropathologic and clinical features of Parkinson’s disease in Alzheimer’s disease patients. Neurology. 1987;37:754–60.

    Article  CAS  PubMed  Google Scholar 

  139. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, et al.; Consortium on DLB. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–72.

    Article  Google Scholar 

  140. Ferman TJ, Boeve BF. Dementia with Lewy bodies. Neurol Clin. 2007;25:741–60.

    Article  PubMed  PubMed Central  Google Scholar 

  141. McKeith IG, Fairbairn AF, Bothwell RA, Moore PB, Ferrier IN, Thompson P, Perry RH. An evaluation of the predictive validity and inter-rater reliability of clinical diagnostic criteria for senile dementia of Lewy body type. Neurology. 1994;44:872–7.

    Article  CAS  PubMed  Google Scholar 

  142. McKeith IG, Ballard CG, Perry RH, Ince PG, O’Brien JT, Neill D, et al. Prospective validation of consensus criteria for the diagnosis of dementia with Lewy bodies. Neurology. 2000;54:1050–8.

    Article  CAS  PubMed  Google Scholar 

  143. Verghese J, Crystal HA, Dickson DW, Lipton RB. Validity of clinical criteria for the diagnosis of dementia with Lewy bodies. Neurology. 1999;53:1974–82.

    Article  CAS  PubMed  Google Scholar 

  144. McKeith IG, Perry EK, Perry RH. Report of the second dementia with Lewy body international workshop. Neurology. 1999;53:902–5.

    Article  CAS  PubMed  Google Scholar 

  145. Boeve BF, Silber MH, Ferman TJ, Kokmen E, Smith GE, Ivnik RJ, et al. REM sleep behavior disorder and degenerative dementia: an association likely reflecting Lewy body disease. Neurology. 1998;51:363–70.

    Article  CAS  PubMed  Google Scholar 

  146. McKeith I, Fairbairn A, Perry R, Thompson P, Perry E. Neuroleptic sensitivity in patients with senile dementia of Lewy body type. BMJ. 1992;305:673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ballard C, Grace J, McKeith I, Holmes C. Neuroleptic sensitivity in dementia with Lewy bodies and Alzheimer’s disease. Lancet. 1998;351:1032–3.

    Article  CAS  PubMed  Google Scholar 

  148. Walker MP, Ayre GA, Cummings JL, Wesnes K, McKeith IG, O’Brien JT, Ballard CG. Quantifying fluctuation in dementia with Lewy bodies, Alzheimer’s disease, and vascular dementia. Neurology. 2000;54:1616–24.

    Article  CAS  PubMed  Google Scholar 

  149. Dickson DW, Ruan D, Crystal H, Mark MH, Davies P, Kress Y, Yen SH. Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology. 1991;41:1402–9.

    Article  CAS  PubMed  Google Scholar 

  150. Kim H, Gearing M, Mirra SS. Ubiquitin-positive CA2/3 neurites in hippocampus coexist with cortical Lewy bodies. Neurology. 1995;45:1768–70.

    Article  CAS  PubMed  Google Scholar 

  151. Lippa CF, Johnson R, Smith TW. The medial temporal lobe in dementia with Lewy bodies: a comparative study with Alzheimer’s disease. Ann Neurol. 1998;43:102–6.

    Article  CAS  PubMed  Google Scholar 

  152. Prusiner SB. The prion diseases. Sci Am. 1995;272:48–57.

    Article  CAS  PubMed  Google Scholar 

  153. Bortone E, Bettoni L, Giorgi C, Terzano MG, Trabattoni GR, Mancia D. Reliability of EEG in the diagnosis of Creutzfeldt-Jakob disease. Electroencephalogr Clin Neurophysiol. 1994;90:323–30.

    Article  CAS  PubMed  Google Scholar 

  154. Steinhoff BJ, Räcker S, Herrendorf G, Poser S, Grosche S, Zerr I, et al. Accuracy and reliability of periodic sharp wave complexes in Creutzfeldt-Jakob disease. Arch Neurol. 1996;53:162–6.

    Article  CAS  PubMed  Google Scholar 

  155. Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol. 1998;43:32–40.

    Article  CAS  PubMed  Google Scholar 

  156. Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med. 2011;17:175–8.

    Article  CAS  PubMed  Google Scholar 

  157. Na DL, Suh CK, Choi SH, Moon HS, Seo DW, Kim SE, et al. Diffusion-weighted magnetic resonance imaging in probable Creutzfeldt-Jakob disease: a clinical-anatomic correlation. Arch Neurol. 1999;56:951–7.

    Article  CAS  PubMed  Google Scholar 

  158. DeArmond SJ, Prusiner SB. Etiology and pathogenesis of prion diseases. Am J Pathol. 1995;146:785–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mestel R. Putting prions to the test. Science. 1996;273:184–9.

    Article  CAS  PubMed  Google Scholar 

  160. Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999;46:224–33.

    Article  CAS  PubMed  Google Scholar 

  161. Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Armangue T, Leypoldt F, Málaga I, Raspall-Chaure M, Marti I, Nichter C, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol. 2014;75:317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lai M, Huijbers MG, Lancaster E, Graus F, Bataller L, Balice-Gordon R, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 2010;9:776–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Irani SR, Michell AW, Lang B, Pettingill P, Waters P, Johnson MR, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69:892–900.

    Article  PubMed  Google Scholar 

  165. Armangue T, Leypoldt F, Dalmau J. Autoimmune encephalitis as differential diagnosis of infectious encephalitis. Curr Opin Neurol. 2014;27:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Irani SR, Gelfand JM, Bettcher BM, Singhal NS, Geschwind MD. Effect of rituximab in patients with leucine-rich, glioma-inactivated 1 antibody-associated encephalopathy. JAMA Neurol. 2014;71:896–900.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain. 2010;133:2734–48.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Irani SR, Pettingill P, Kleopa KA, Schiza N, Waters P, Mazia C, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol. 2012;72:241–55.

    Article  PubMed  Google Scholar 

  169. Lancaster E, Huijbers MG, Bar V, Boronat A, Wong A, Martinez-Hernandez E, et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol. 2011;69:303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Petit-Pedrol M, Armangue T, Peng X, Bataller L, Cellucci T, Davis R, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014;13:276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Boronat A, Gelfand JM, Gresa-Arribas N, Jeong HY, Walsh M, Roberts K, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol. 2013;73:120–8.

    Article  CAS  PubMed  Google Scholar 

  172. Lancaster E, Martinez-Hernandez E, Titulaer MJ, Boulos M, Weaver S, Antoine JC, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology. 2011;77:1698–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mat A, Adler H, Merwick A, Chadwick G, Gullo G, Dalmau JO, Tubridy N. Ophelia syndrome with metabotropic glutamate receptor 5 antibodies in CSF. Neurology. 2013;80:1349–50.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Lai M, Hughes EG, Peng X, Zhou L, Gleichman AJ, Shu H, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol. 2009;65:424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Höftberger R, Titulaer MJ, Sabater L, Dome B, Rózsás A, Hegedus B, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology. 2013;81:1500–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Graus F, Delattre JY, Antoine JC, Dalmau J, Giometto B, Grisold W, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry. 2004;75:1135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Grabowski Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domoto-Reilly, K., Flanagan, M.E., Grabowski, T.J. (2019). Dementias. In: Rosenberg, R. (eds) Atlas of Clinical Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-03283-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03283-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03281-4

  • Online ISBN: 978-3-030-03283-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics