Skip to main content

Acyclic Strategy for Silent Self-stabilization in Spanning Forests

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11201))

Abstract

We formalize design patterns, commonly used in self-stabilization, to obtain general statements regarding both correctness and time complexity. Precisely, we study a class of algorithms devoted to networks endowed with a sense of direction describing a spanning forest whose characterization is a simple (i.e., quasi-syntactic) condition. We show that any algorithm of this class is (1) silent and self-stabilizing under the distributed unfair daemon, and (2) has a stabilization time polynomial in moves and asymptotically optimal in rounds. To illustrate the versatility of our method, we review several works where our results apply.

This study has been partially supported by the ANR projects DESCARTES (ANR-16-CE40-0023) and ESTATE (ANR-16-CE25-0009), and by the Franco-German DFG-ANR project 40300781 DISCMAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The level of p in G is the distance from p to the root of its tree in G (0 if p is the root itself).

  2. 2.

    The height of \(A_i\) in \(\mathbf {GC}\) is 0 if the in-degree of \(A_i\) in \(\mathbf {GC}\) is 0. Otherwise, it is equal to one plus the maximum of the heights of the \(A_i\)’s predecessors w.r.t. \(\prec _{\mathcal {A}}\).

References

  1. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-stabilizing leader election in polynomial steps. Inf. Comput. 254, 330–366 (2017)

    Article  MathSciNet  Google Scholar 

  2. Arora, A., Gouda, M., Herman, T.: Composite routing protocols. In: SPDP 1990, pp. 70–78 (1990)

    Google Scholar 

  3. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 18–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11764-5_2

    Chapter  Google Scholar 

  4. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-free super-stabilizing spanning tree construction. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16023-3_7

    Chapter  Google Scholar 

  5. Blin, L., Tixeuil, S.: Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative. Dist. Comp. 31(2), 139–166 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chaudhuri, P.: An \(O(n^2)\) self-stabilizing algorithm for computing bridge-connected components. Computing 62(1), 55–67 (1999)

    Article  MathSciNet  Google Scholar 

  7. Chaudhuri, P.: A note on self-stabilizing articulation point detection. J. Syst. Arch. 45(14), 1249–1252 (1999)

    Article  Google Scholar 

  8. Chaudhuri, P., Thompson, H.: Self-stabilizing tree ranking. Int. J. Comput. Math. 82(5), 529–539 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chaudhuri, P., Thompson, H.: Improved self-stabilizing algorithms for l(2, 1)-labeling tree networks. Math. Comput. Sci. 5(1), 27–39 (2011)

    Article  MathSciNet  Google Scholar 

  10. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of fundamental protocols. TAAS 4(1), 6:1–6:27 (2009)

    Article  Google Scholar 

  11. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, L.L., Rivierre, Y.: Competitive self-stabilizing \(k\)-clustering. TCS 626, 110–133 (2016)

    Article  MathSciNet  Google Scholar 

  12. Datta, A.K., Larmore, L.L., Vemula, P.: An \({O}({N})\)-time self-stabilizing leader election algorithm. JPDC 71(11), 1532–1544 (2011)

    MATH  Google Scholar 

  13. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited. JACIC 3(10), 498–514 (2006)

    Article  Google Scholar 

  14. Devismes, S.: A silent self-stabilizing algorithm for finding cut-nodes and bridges. Parallel Process. Lett. 15(1–2), 183–198 (2005)

    Article  MathSciNet  Google Scholar 

  15. Devismes, S., Ilcinkas, D., Johnen, C.: Silent self-stabilizing scheme for spanning-tree-like constructions. Technical report, HAL (2018)

    Google Scholar 

  16. Devismes, S., Johnen, C.: Silent self-stabilizing BFS tree algorithms revisited. JPDC 97, 11–23 (2016)

    Google Scholar 

  17. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. Acta Inf. 36(6), 447–462 (1999)

    Article  MathSciNet  Google Scholar 

  18. Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Dist. Comp. 14(3), 147–162 (2001)

    Article  Google Scholar 

  19. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Dist. Comp. 7(1), 55–59 (1993)

    Article  MathSciNet  Google Scholar 

  20. Christian, G., Nicolas, H., David, I., Colette, J.: Disconnected components detection and rooted shortest-path tree maintenance in networks. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 120–134. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11764-5_9

    Chapter  Google Scholar 

  21. Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing breadth-first trees. IPL 41(2), 109–117 (1992)

    Article  MathSciNet  Google Scholar 

  22. Karaata, M.H.: A self-stabilizing algorithm for finding articulation points. Int. J. Found. Comput. Sci. 10(1), 33–46 (1999)

    Article  MathSciNet  Google Scholar 

  23. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Dist. Comp. 7(1), 17–26 (1993)

    Article  Google Scholar 

  24. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Dist. Comp. 22(4), 215–233 (2010)

    Article  Google Scholar 

  25. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  26. Turau, V., Köhler, S.: A distributed algorithm for minimum distance-k domination in trees. J. Graph Algorithms Appl. 19(1), 223–242 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anaïs Durand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Altisen, K., Devismes, S., Durand, A. (2018). Acyclic Strategy for Silent Self-stabilization in Spanning Forests. In: Izumi, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science(), vol 11201. Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03232-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03231-9

  • Online ISBN: 978-3-030-03232-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics