Skip to main content

Towards Security Authentication for IoT Devices with Lattice-Based ZK

  • Conference paper
  • First Online:
Network and System Security (NSS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11058))

Included in the following conference series:

  • 1493 Accesses

Abstract

In recent years, IoT devices have been widely used in the newly-emerging technologized such as crowd-censoring and smart city. Authentication among each IoT node plays a central role in secure communications. Generally, zero-knowledge identification scheme enables one party to authenticate himself without disclosing any additional information. However, a zero-knowledge based protocol normally involves heavily computational or interactive overhead, which is unaffordable for lightweight IoT devices. In this paper, we propose a modified zero-knowledge identification scheme based on that of Silva, Cayrel and Lindner (SCL, for short). The security of our scheme relies on the existence of a commitment scheme and on the hardness of ISIS problem (i.e., a hardness assumption that can be reduced to worst-case lattice problems). We present the detail construction and security proof in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  2. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: ACM Symposium on Theory of Computing, pp. 197–206 (2008). https://doi.org/10.1145/1374376.1374407

  3. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/0218012

    Article  MathSciNet  MATH  Google Scholar 

  4. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_10

    Chapter  Google Scholar 

  5. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13

    Chapter  Google Scholar 

  6. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_3

    Chapter  Google Scholar 

  7. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

    Chapter  Google Scholar 

  8. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: IEEE Symposium on Foundations of Computer Science, pp. 372–381, October 2004. https://doi.org/10.1109/FOCS.2004.72

  9. Miklós, A.: Generating hard instances of lattice problems. Electron. Colloq. Comput. Complex. 3(7) (1996). http://eccc.hpi-web.de/eccc-reports/1996/TR96-007/index.html

  10. Véron, P.: Cryptanalysis of harari’s identification scheme. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 264–269. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60693-9_28

    Chapter  Google Scholar 

  11. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016). https://doi.org/10.1561/0400000074

    Article  MathSciNet  MATH  Google Scholar 

  12. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge identification with lattices. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 1–17. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16280-0_1

    Chapter  Google Scholar 

  13. Rosemberg, S., Pierre-Louis, C., Richard, L.: Zero-knowledge identification based on lattices with low communication costs. XI Simpósio Brasileiro de Segurança da Informaçao e de Sistemas Computacionais 8, 95–107 (2011)

    Google Scholar 

  14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.org/10.1137/S0036144598347011

    Article  MathSciNet  MATH  Google Scholar 

  15. Uriel, F., Amos, F., Adi, S.: Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988). https://doi.org/10.1007/BF02351717

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under grant No. 61572294, 61602287 and 11771252, Natural Science Foundation of Shandong Province under grant No. ZR2017MF021, State Key Program of National Natural Science of China under grant No. 61632020, the Fundamental Research Funds of Shandong University under grant No. 2017JC019 and 2016JC029, and the Primary Research & Development Plan of Shandong Province under grant No. 2018GGX101037. We thank the reviewers for their constructive suggestions. Special thanks for Chuan Zhao at University of Jinan for his generous help and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, J., Jiang, H., Xu, Q., Lv, G., Zhao, M., Wang, H. (2018). Towards Security Authentication for IoT Devices with Lattice-Based ZK. In: Au, M., et al. Network and System Security. NSS 2018. Lecture Notes in Computer Science(), vol 11058. Springer, Cham. https://doi.org/10.1007/978-3-030-02744-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02744-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02743-8

  • Online ISBN: 978-3-030-02744-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics