Skip to main content

Space for Traffic Manoeuvres: An Overview

  • Chapter
  • First Online:
Symposium on Real-Time and Hybrid Systems

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11180))

  • 476 Accesses

Abstract

Dense traffic on roads is calling for advanced driver assistance systems or even autonomous driving to increase the safety (collision freedom). How can we prove that such systems guarantee safety? Realising that safety on roads is a primarily spatial property, we started an approach to car safety that decomposes spatial from dynamic reasoning; it is based on a dedicated Multi-lane Spatial Logic (MLSL) [1], which abstracts from the continuous car dynamics, and controllers using MLSL formulas. The paper gives an overview of recent results in pursuing this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_28

    Chapter  Google Scholar 

  2. Varaija, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom. Control AC–38, 195–207 (1993)

    Article  MathSciNet  Google Scholar 

  3. Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated vehicles. IEEE Trans. Autom. Control 43, 522–539 (1998)

    Article  MathSciNet  Google Scholar 

  4. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing and merging. Technical report UCB-ITS-PRR-99-13, California Partners for Advanced Transit and Highways (PATH), University of California at Berkeley (1999)

    Google Scholar 

  5. Arechiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guarantee closed-loop system properties. In: American Control Conference (ACC) 2012, pp. 3573–3580. IEEE (2012)

    Google Scholar 

  6. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_6

    Chapter  Google Scholar 

  7. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Spinger, Berlin (2010)

    Chapter  Google Scholar 

  8. Althoff, M., Stursberg, O., Buss, M.: Safety assessment of autonomous cars using verification techniques. In: American Control Conference (ACC) 2007, pp. 4154–4159. IEEE (2007)

    Google Scholar 

  9. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. Int. J. Control 79, 395–421 (2006)

    Article  MathSciNet  Google Scholar 

  10. Olderog, E.R., Ravn, A.P., Wisniewski, R.: Linking discrete and continuous models, applied to traffic manoeuvres. In: Hinchey, Mike G., Bowen, Jonathan P., Olderog, Ernst-Rüdiger (eds.) Provably Correct Systems. NASA Monographs in Systems and Software Engineering, pp. 95–120. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-48628-4

    Chapter  Google Scholar 

  11. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems based on l-complete approximations. Discret. Event Dyn. Syst. 12, 83–107 (2002)

    Article  MathSciNet  Google Scholar 

  12. Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of hybrid systems. In: Proceedings of the IFAD Conference on Analysis and Design of Hybrid Systems, pp. 389–394. St. Malo (2003)

    Google Scholar 

  13. Habets, L.C.G.J.M., Collins, P., van Schuppen, J.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. Control 51, 938–948 (2006)

    Article  MathSciNet  Google Scholar 

  14. He, J., et al.: Provably correct systems. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 288–335. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4_171

    Chapter  Google Scholar 

  15. Hinchey, M.G., Bowen, J.P., Olderog, E.R.: Provably Correct Systems. NASA Monographs in System and Software Engineering, 328 p. Springer, Berlin (2017). ISBN 978-3-319-48627-7

    Google Scholar 

  16. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18, 10–19 (1985)

    Article  Google Scholar 

  17. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40, 269–276 (1991)

    Article  MathSciNet  Google Scholar 

  18. Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_33

    Chapter  Google Scholar 

  19. Schäfer, A.: Axiomatisation and decidability of multi-dimensional duration calculus. Inf. Comput. 205, 25–64 (2007)

    Article  MathSciNet  Google Scholar 

  20. Schäfer, A.: Specification and verification of mobile real-time systems. Ph.D thesis, Department of Computing, University of Oldenburg (2006)

    Google Scholar 

  21. Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for duration calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56503-5_8

    Chapter  Google Scholar 

  22. Chaochen, Z., Hansen, M.R.: Duration calculus: a formal approach to real-time systems. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2004)

    Google Scholar 

  23. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. Log. Methods Comput. Sci. 11 (2015)

    Google Scholar 

  24. Linker, S.: Proofs for traffic safety: combining diagrams and logics. Ph.D thesis, Department of Computing, University of Oldenburg (2015)

    Google Scholar 

  25. Ody, H.: Undecidability results for multi-lane spatial logic. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 404–421. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_24

    Chapter  Google Scholar 

  26. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4_36

    Chapter  MATH  Google Scholar 

  27. Fränzle, M., Hansen, M.R., Ody, H.: No need knowing numerous neighbours. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 152–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_11

    Chapter  Google Scholar 

  28. Olderog, E.-R., Schwammberger, M.: Formalising a hazard warning communication protocol with timed automata. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 640–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_32

    Chapter  Google Scholar 

  29. Schwammberger, M.: Introducing liveness into multi-lane spatial logic lane controllers using uppaal. In: Gleirscher, M., Kugele, S., Linker, S., (eds.) Proceedings of the Safe Control of Autonomous Vehicles (SCAV). EPTCS (2018), to appear

    Google Scholar 

  30. van Dalen, D.: Logic and Structure. Universitext, 3rd edn. Springer, Berlin (1994)

    Book  Google Scholar 

  31. Linker, S.: Spatial reasoning about motorway traffic safety with Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 34–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_3

    Chapter  Google Scholar 

  32. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4_12

    Chapter  MATH  Google Scholar 

  33. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of autonomous Urban traffic. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 274–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_16

    Chapter  MATH  Google Scholar 

  34. Bochmann, G.V., Hilscher, M., Linker, S., Olderog, E.R.: Synthesizing and verifying controllers for multi-lane traffic maneuvers. Form. Asp. Comput. 29, 583–600 (2017)

    Article  MathSciNet  Google Scholar 

  35. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_17

    Chapter  Google Scholar 

  36. Xu, B., Li, Q.: A spatial logic for modeling and verification of collision-free control of vehicles. In: Wang, H., Mokhtari, M., (eds.) 21st International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 33–42. IEEE Computer Society (2016)

    Google Scholar 

Download references

Acknowledgements

My interest in the safety of traffic manoeuvres arose in the Project H3 (Cooperating Traffic Agents) of the collaborative research center AVACS (Automatic Verification and Analysis of Complex Systems, 2004–2015). In particular, I thank Werner Damm, Andre Platzer, and Jan-David Quesel for inspiring discussions.

The following colleagues and students helped to shape the results on the spatial approach to traffic safety, many of them reported in this paper: Anders P. Ravn, Rafael Wisniewsky, Gregor v. Bochmann, Martin Fränzle, Michael R. Hansen, Sven Linker, Martin Hilscher, Heinrich Ody, Maike Schwammberger, Christopher Bischopink, Lasse Hammer, Christian Harken, and Sven Lampe. Many thanks to all of them!

We also thank the anonymous reviewers for their helpful comments that improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst-Rüdiger Olderog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olderog, ER. (2018). Space for Traffic Manoeuvres: An Overview. In: Jones, C., Wang, J., Zhan, N. (eds) Symposium on Real-Time and Hybrid Systems. Lecture Notes in Computer Science(), vol 11180. Springer, Cham. https://doi.org/10.1007/978-3-030-01461-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01461-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01460-5

  • Online ISBN: 978-3-030-01461-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics