Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 226 Accesses

Abstract

Nature’s virtuosity in creating a multitude of complex structures and functionalities has always enriched human reflection and creativity within different fields of knowledge. Remarkable technological achievements in materials science are often inspired by processes taking place at natural surfaces and interfaces, e.g., gecko-inspired dry adhesives [1], drag-reducing and self-cleaning coatings mimicking the texture of shark skin [2], waterproof sealings based on the hydrophobic texture of nasturtium leaves [3], etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawkes EW, Eason EV, Christensen DL, Cutkosky MR (2014) Human climbing with efficiently scaled gecko-inspired dry adhesives. J R Soc Interface 12

    Article  Google Scholar 

  2. Ball P (1999) Engineering shark skin and other solutions. Nature 400:507–509

    Article  ADS  Google Scholar 

  3. Bird JC, Dhiman R, Kwon H-M, Varanasi KK (2013) Reducing the contact time of a bouncing drop. Nature 503:385–388

    Article  ADS  Google Scholar 

  4. Besenbacher F (1996) Scanning tunnelling microscopy studies of metal surfaces. Rep Prog Phys 59:1737

    Article  ADS  Google Scholar 

  5. Cram DJ (1988) The design of molecular hosts, guests, and their complexes (nobel lecture). Angew Chem Int Ed 27:1009–1020

    Article  Google Scholar 

  6. Barth JV (2007) Molecular architectonic on metal surfaces. Annu Rev Phys Chem 58:375–407

    Article  ADS  Google Scholar 

  7. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  8. Taniguchi N et al (1974) On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering Tokyo, Part II, Japan Society of Precision Engineering, pp 18–23

    Google Scholar 

  9. Drexler KE (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci USA 78:5275–5278

    Article  ADS  Google Scholar 

  10. Drexler KE, Minsky M (1990) Engines of creation, Fourth Estate London

    Google Scholar 

  11. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  ADS  Google Scholar 

  12. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  ADS  Google Scholar 

  13. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  14. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7\(\times \)7 reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  ADS  Google Scholar 

  15. Wöll C, Chiang S, Wilson RJ, Lippel PH (1989) Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys Rev B 39:7988–7991

    Article  ADS  Google Scholar 

  16. Barth JV, Brune H, Ertl G, Behm RJ (1990) Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys Rev B 42:9307–9318

    Article  ADS  Google Scholar 

  17. Beebe T, Wilson T, Ogletree F, Katz J, Balhorn R (1989) Direct observation of native DNA structures with the scanning tunneling microscope. Science 243:370–372

    Article  ADS  Google Scholar 

  18. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526

    Article  ADS  Google Scholar 

  19. Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262:218–220

    Article  ADS  Google Scholar 

  20. Manoharan HC, Lutz CP, Eigler DM (2000) Quantum mirages formed by coherent projection of electronic structure. Nature 403:512–515

    Article  ADS  Google Scholar 

  21. Repp J, Meyer G, Olsson FE, Persson M (2004) Controlling the charge state of individual gold adatoms. Science 305:493–495

    Article  ADS  Google Scholar 

  22. Martínez-Blanco J, Nacci C, Erwin SC, Kanisawa K, Locane E, Thomas M, von Oppen F, Brouwer PW, Fölsch S (2015) Gating a single-molecule transistor with individual atoms. Nat. Phys. 11:640–644

    Article  Google Scholar 

  23. Wu SW, Ogawa N, Ho W (2006) Atomic-scale coupling of photons to single-molecule junctions. Science 312:1362–1365

    Article  ADS  Google Scholar 

  24. Qiu XH, Nazin GV, Ho W (2003) Vibrationally resolved fluorescence excited with submolecular precision. Science 299:542–546

    Article  ADS  Google Scholar 

  25. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–1735

    Article  ADS  Google Scholar 

  26. Hla S-W, Meyer G, Rieder K-H (2001) Inducing single-molecule chemical reactions with a UHV-STM: a new dimension for nano-science and technology. Chem Phys Chem 2:361–366

    Article  Google Scholar 

  27. Auwärter W, Seufert K, Bischoff F, Ecija D, Vijayaraghavan S, Joshi S, Klappenberger F, Samudrala N, Barth JV (2012) A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat Nanotechnol 7:41–46

    Article  ADS  Google Scholar 

  28. Perera UGE, Ample F, Kersell H, Zhang Y, Vives G, Echeverria J, Grisolia M, Rapenne G, Joachim C, Hla S-W (2013) Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat Nanotechnol 8:46–51

    Article  ADS  Google Scholar 

  29. Clark K, Hassanien A, Khan S, Braun K-F, Tanaka H, Hla S-W (2010) Superconductivity in just four pairs of (BETS)2GaCl4 molecules. Nat Nanotechnol 5:261–265

    Article  ADS  Google Scholar 

  30. González-Herrero H, Gómez-Rodríguez JM, Mallet P, Moaied M, Palacios JJ, Salgado C, Ugeda MM, Veuillen J-Y, Yndurain F, Brihuega I (2016) Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352:437

    Article  ADS  Google Scholar 

  31. Khajetoorians AA, Wiebe J, Chilian B, Lounis S, Blugel S, Wiesendanger R (2012) Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat Phys 8:497–503

    Article  Google Scholar 

  32. Loth S, Etzkorn M, Lutz CP, Eigler DM, Heinrich AJ (2010) Measurement of fast electron spin relaxation times with atomic resolution. Science 329:1628–1630

    Article  ADS  Google Scholar 

  33. Brune H, Romainczyk C, Roder H, Kern K (1994) Mechanism of the transition from fractal to dendritic growth of surface aggregates. Nature 369:469–471

    Article  ADS  Google Scholar 

  34. Brune H, Giovannini M, Bromann K, Kern K (1998) Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394:451–453

    Article  ADS  Google Scholar 

  35. Silly F, Pivetta M, Ternes M, Patthey F, Pelz JP, Schneider W-D (2004) Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. Phys Rev Lett 92:016101

    Article  ADS  Google Scholar 

  36. Pawin G, Wong KL, Kwon K-Y, Bartels L (2006) A homomolecular porous network at a Cu(111) surface. Science 313:961–962

    Article  ADS  Google Scholar 

  37. Barth JV (2009) Fresh perspectives for surface coordination chemistry. Surf Sci 603:1533–1541

    Article  ADS  Google Scholar 

  38. Abb S, Harnau L, Gutzler R, Rauschenbach S, Kern K (2016) Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides. Nat Commun 7:10335

    Article  ADS  Google Scholar 

  39. Klappenberger F (2014) Two-dimensional functional molecular nanoarchitectures—complementary investigations with scanning tunneling microscopy and X-ray spectroscopy. Prog Surf Sci 89:1–55

    Article  ADS  Google Scholar 

  40. Parkin G (2006) Valence, oxidation number, and formal charge: three related but fundamentally different concepts. J Chem Educ 83:791

    Article  Google Scholar 

  41. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell university press

    Google Scholar 

  42. Mond L, Langer C, Quincke F (1890) L.—action of carbon monoxide on nickel. J Chem Soc Trans 57:749–753

    Article  Google Scholar 

  43. Nikolaev P, Bronikowski MJ, Bradley R, Rohmund F, Colbert DT, Smith K, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97

    Article  ADS  Google Scholar 

  44. Kano E, Takeguchi M, Fujita J-I, Hashimoto A (2014) Direct observation of ptterminating carbyne on graphene. Carbon 80:382–386

    Article  Google Scholar 

  45. Casari C, Tommasini M, Tykwinski R, Milani A (2016) Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8:4414–4435

    Article  ADS  Google Scholar 

  46. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868–871

    Article  ADS  Google Scholar 

  47. Krüger A (2010) Carbon—element of many faces. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  48. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  ADS  Google Scholar 

  49. Baughman RH, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: layered phases containing sp\(^2\) and sp atoms. J Chem Phys 87:6687–6699

    Article  ADS  Google Scholar 

  50. Hoffmann R (1987) How chemistry and physics meet in the solid state. Angew Chem Int Ed 26:846–878

    Article  Google Scholar 

  51. Cretu O, Botello-Mendez AR, Janowska I, Pham-Huu C, Charlier J-C, Banhart F (2013) Electrical transport measured in atomic carbon chains. Nano Lett 13:3487–3493

    Article  ADS  Google Scholar 

  52. La Torre A, Botello-Mendez A, Baaziz W, Charlier J-C, Banhart F (2015) Strain-induced metal-semiconductor transition observed in atomic carbon chains. Nat Commun 6

    Google Scholar 

  53. Szafert S, Gladysz J (2003) Carbon in one dimension: structural analysis of the higher conjugated polyynes. Chem Rev 103:4175–4206

    Article  Google Scholar 

  54. Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S, Ishida M, Kikuchi S, Kitaura R, Sugai T, Sakata M, Shinohara H (2006) Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside. Chem Phys Lett 428:356–360

    Article  ADS  Google Scholar 

  55. Tsuji M, Tsuji T, Kuboyama S, Yoon S-H, Korai Y, Tsujimoto T, Kubo K, Mori A, Mochida I (2002) Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Chem Phys Lett 355:101–108

    Article  ADS  Google Scholar 

  56. Jin C, Lan H, Peng L, Suenaga K, Iijima S (2009) Deriving carbon atomic chains from graphene. Phys Rev Lett 102:205501

    Article  ADS  Google Scholar 

  57. Siemsen P, Livingston RC, Diederich F (2000) Acetylenic coupling: a powerful tool in molecular construction. Angew Chem Int Ed 39:2632–2657

    Article  Google Scholar 

  58. Klappenberger F, Zhang Y-Q, Björk J, Klyatskaya S, Ruben M, Barth JV (2015) Onsurface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc Chem Res 48:2140–2150

    Article  Google Scholar 

  59. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262

    Article  Google Scholar 

  60. Lautens M, Klute W, Tam W (1996) Transition metal-mediated cycloaddition reactions. Chem Rev 96:49–92

    Article  Google Scholar 

  61. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  62. Li P, Wang L (2006) A novel silver iodide catalyzed Sonogashira coupling reaction. Synlett 14:2261–2265

    Google Scholar 

  63. Takahashi S, Kariya M, Yatake T, Sonogashira K, Hagihara N (1978) Studies of polyyne polymers containing transition metals in the main chain. 2. Synthesis of poly [trans-bis(tri-n-butylphosphine) platinum 1,4-butadiynediyl] and evidence of a rodlike structure. Macromolecules 11:1063–1066

    Article  ADS  Google Scholar 

  64. Wong W-Y (2005) Recent advances in luminescent transition metal polyyne polymers. J Inorg Organomet Polym Mater 15:197–219

    Article  Google Scholar 

  65. Wong WY, Ho CL (2010) Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc Chem Res 43:1246–1256

    Article  Google Scholar 

  66. Green KA, Cifuentes MP, Samoc M, Humphrey MG (2011) Metal alkynyl complexes as switchable NLO systems. Coord Chem Rev 255:2530–2541

    Article  Google Scholar 

  67. Harriman A, Ziessel R (1998) Building photoactive molecular-scale wires. Coord Chem Rev 171:331–339

    Article  Google Scholar 

  68. Ren T (2005) Diruthenium s-alkynyl compounds: a new class of conjugated organometallics. Organometallics 24:4854–4870

    Article  Google Scholar 

  69. Guo S, Kandel SA (2010) Scanning tunneling microscopy of mixed valence dinuclear organometallic cations and counterions on Au(111). J Phys Chem Lett 1:420–424

    Article  Google Scholar 

  70. Yam VW-W (2002) Molecular design of transition metal alkynyl complexes as building blocks for luminescent metal-based materials: structural and photophysical aspects. Acc Chem Res 35:555–563

    Article  Google Scholar 

  71. Long N, Wong W-T (2014) The chemistry of molecular imaging. Wiley, Hoboken, NJ

    Google Scholar 

  72. Whittell GR, Hager MD, Schubert US, Manners I (2011) Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat Mater 10:176–188

    Article  ADS  Google Scholar 

  73. Lang H, George DSA, Rheinwald G (2000) Bis(alkynyl) transition metal complexes, R\(^{1}\)C\(\equiv \)C–[M]–C\(\equiv \)CR\(^{2}\), as organometallic chelating ligands; formation of m, h1(2)-alkynylbridged binuclear and oligonuclear complexes. Coord Chem Rev 206:101–197

    Article  Google Scholar 

  74. Weber PB, Hellwig R, Paintner T, Lattelais M, Paszkiewicz M, Casado Aguilar P, Deimel PS, Guo Y, Zhang Y-Q, Allegretti F (2016) Surface-guided formation of an organocobalt complex. Angew Chem Int Ed 55:5754–5759

    Article  Google Scholar 

  75. (2011) Dewar-chatt-duncanson bonding model. Wiley

    Google Scholar 

  76. Yam VW-W, Wong KM-C (2005) Luminescent molecular rods-transition-metal Alkynyl complexes. Springer, pp 1–32

    Google Scholar 

  77. Bieri M, Blankenburg S, Kivala M, Pignedoli CA, Ruffieux P, Müllen K, Fasel R (2011) Surface-supported 2D heterotriangulene polymers. Chem Commun 47:10239–10241

    Article  Google Scholar 

  78. Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L (2012) Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat Chem 4:215–220

    Article  Google Scholar 

  79. Zwaneveld NAA, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D, Porte L (2008) Organized formation of 2D extended covalent organic frameworks at surfaces. J Am Chem Soc 130:6678–6679

    Article  Google Scholar 

  80. Weigelt S, Busse C, Bombis C, Knudsen M, Gothelf K, Lægsgaard E, Besenbacher F, Linderoth T (2008) Surface synthesis of 2D branched polymer nanostructures. Angew Chem Int Ed 47:4406–4410

    Article  Google Scholar 

  81. Marele AC, Mas-Balleste R, Terracciano L, Rodriguez-Fernandez J, Berlanga I, Alexandre SS, Otero R, Gallego JM, Zamora F, Gomez-Rodriguez JM (2012) Formation of a surface covalent organic framework based on polyester condensation. Chem Commun 48:6779–6781

    Article  Google Scholar 

  82. Dienstmaier JF, Medina DD, Dogru M, Knochel P, Bein T, Heckl WM, Lackinger M (2012) Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6:7234–7242

    Article  Google Scholar 

  83. Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L (2011) Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. J Am Chem Soc 133:1203–1205

    Article  Google Scholar 

  84. Yang B, Björk J, Lin H, Zhang X, Zhang H, Li Y, Fan J, Li Q, Chi L (2015) Synthesis of surface covalent organic frameworks via dimerization and cyclotrimerization of acetyls. J Am Chem Soc 137:4904–4907

    Article  Google Scholar 

  85. Perepichka DF, Rosei F (2009) Extending polymer conjugation into the second dimension. Science 323:216–217

    Article  Google Scholar 

  86. Wan S, Guo J, Kim J, Ihee H, Jiang D (2008) A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew Chem Int Ed 47:8826–8830

    Article  Google Scholar 

  87. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nanoarchitectures by covalent assembly of molecular building blocks. Nat Nanotechnol 2:687–691

    Article  ADS  Google Scholar 

  88. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170

    Article  ADS  Google Scholar 

  89. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220

    Article  Google Scholar 

  90. Lipton-Duffin JA, Ivasenko O, Perepichka DF, Rosei F (2009) Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5:592–597

    Article  Google Scholar 

  91. Chen Y-C, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7:6123–6128

    Article  Google Scholar 

  92. Talirz L, Ruffieux P, Fasel R (2016) On-surface synthesis of atomically precise grapheme nanoribbons. Adv Mater

    Google Scholar 

  93. Haq S, Hanke F, Dyer MS, Persson M, Iavicoli P, Amabilino DB, Raval R (2011) Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers. J Am Chem Soc 133:12031–12039

    Article  Google Scholar 

  94. Zhong D, Franke J-H, Podiyanachari SK, Blömker T, Zhang H, Kehr G, Erker G, Fuchs H, Chi L (2011) Linear alkane polymerization on a gold surface. Science 334:213–216

    Article  ADS  Google Scholar 

  95. Liu J, Chen Q, Xiao L, Shang J, Zhou X, Zhang Y, Wang Y, Shao X, Li J, Chen W, Xu GQ, Tang H, Zhao D, Wu K (2015) Lattice-directed formation of covalent and organometallic molecular wires by terminal alkynes on Ag surfaces. ACS Nano 9:6305–6314

    Article  Google Scholar 

  96. Sun Q, Cai L, Ma H, Yuan C, Xu W (2016) Dehalogenative homocoupling of terminal alkynyl bromides on Au(111): incorporation of acetylenic scaffolding into surface nanostructures. ACS Nano 10:7023–7030

    Article  Google Scholar 

  97. Zhang Y-Q, Kepčija N, Kleinschrodt M, Diller K, Fischer S, Papageorgiou AC, Allegretti F, Björk J, Klyatskaya S, Klappenberger F, Ruben M, Barth JV (2012) Homocoupling of terminal alkynes on a noble metal surface. Nat Commun 3:1286

    Google Scholar 

  98. Cirera B, Zhang Y-Q, Björk J, Klyatskaya S, Chen Z, Ruben M, Barth JV, Klappenberger F (2014) Synthesis of extended graphdiyne wires by vicinal surface templating. Nano Lett 14:1891–1897

    Article  ADS  Google Scholar 

  99. Ivanovskii A (2013) Graphynes and graphdyines. Prog Solid State Chem 41:1–19

    Article  Google Scholar 

  100. Peng Q, Dearden AK, Crean J, Han L, Liu S, Wen X, De S (2014) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1–29

    Article  Google Scholar 

  101. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43:2572–2586

    Article  Google Scholar 

  102. Liu J, Ruffieux P, Feng X, Müllen K, Fasel R (2014) Cyclotrimerization of arylalkynes on Au(111). Chem Commun 50:11200–11203

    Article  Google Scholar 

  103. Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W (2013) On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J Am Chem Soc 135:8448–8451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Hellwig .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hellwig, R. (2018). Introduction. In: Alkyne‐Based Nanostructures on Silver Substrates . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00997-7_1

Download citation

Publish with us

Policies and ethics