Skip to main content

The Laplace Transform

  • Chapter
  • First Online:
Introduction to Fractional Differential Equations

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 25))

  • 1365 Accesses

Abstract

A function f(t) is called original function if:

  1. 1.

    f(t) ≡ 0 for t < 0,

  2. 2.

    \(|f(t)| < Me^{s_0t}\) for t > 0 with \(M > 0, s_0\in \mathbb {R}\).

  3. 3.

    For every closed interval [a, b], the function satisfies the Dirichlet conditions:

    1. (a)

      is bounded,

    2. (b)

      or is continuous, or has a finite number of discontinuities of first kind,

    3. (c)

      has a finite number of extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pierre Laplace (1749–1827).

  2. 2.

    E. Post (1897–1954).

  3. 3.

    J. Stirling (1692–1770).

References

  1. Abramowitz, M., & Stegun, I. A. (Eds.). (1965). Handbook of mathematical functions. Dover books on mathematics. New York: Dover Publications.

    Google Scholar 

  2. Caputo, M. (1999). Lessons on seismology and rheological tectonics. Technical report, Universitá degli Studi La Sapienza, Rome.

    Google Scholar 

  3. Caputo, M., & Fabrizio, M. (2015). Damage and fatigue described by a fractional derivative model. Journal of Computational Physics, 293, 400–408.

    Article  MathSciNet  Google Scholar 

  4. Debnath, L., & Bhatta, D. (2007). Integral transforms and their applications. Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  5. Erdélyi, A. (Ed.). (1955). Higher transcendental functions (Vols. I–III). New York: McGraw-Hill Book Company

    Google Scholar 

  6. Jumarie, G. (2009). Laplaces transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative. Applied Mathematics Letters, 22, 1659–1664.

    Article  MathSciNet  Google Scholar 

  7. Post, E. L. (1930). Generalized differentiation. Transactions of the American Mathematical Society, 32, 723–781.

    Article  MathSciNet  Google Scholar 

  8. Poularikas, A. D. (Ed.). (2000). The transforms and applications handbook (2nd ed.). CRC Press: Boca Raton.

    MATH  Google Scholar 

  9. Schiff, J. L. (Ed.). (1999). The laplace transform, theory and applications. New York: Springer.

    MATH  Google Scholar 

  10. Wheeler, N. (1997). Construction and physical application of fractional calculus. Technical report, Reed College Physics Department.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milici, C., Drăgănescu, G., Tenreiro Machado, J. (2019). The Laplace Transform. In: Introduction to Fractional Differential Equations. Nonlinear Systems and Complexity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-00895-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00895-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00894-9

  • Online ISBN: 978-3-030-00895-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics