Skip to main content

Posttraumatic Stress Disorder: From Neurobiology to Cycles of Violence

  • Chapter
  • First Online:
Trauma, Autism, and Neurodevelopmental Disorders

Abstract

Trauma and stress-related disorders, such as posttraumatic stress (PTSD), are remarkably common and debilitating, and are often characterized by dysregulated threat responses. This chapter will review the neurobiological pathways mediating dysregulated threat and fear responses that underlie PTSD, providing examples of how the biological underpinnings may lead to pathological symptoms. Although PTSD is most often associated with military trauma, it is extremely common in civilian populations with high levels of violence exposure. Through examples and case studies of civilian PTSD, we will show how pervasive childhood and adult trauma increase risk for PTSD and associated substance abuse, depression, and aggression symptoms, contributing to cycles of violence and trauma-related disorders in at-risk communities. Through advances in understanding mechanisms underlying trauma sequelae and intergenerational transmission of risk, new research hopes to lead to novel approaches to treatment and prevention of fear-related disorders such as PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Association, A. P. Diagnostic and statistical manual of mental disorders (DSM-5®). 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  2. Kessler RC, et al. LIfetime prevalence and age-of-onset distributions of dsm-iv disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:593–602. https://doi.org/10.1001/archpsyc.62.6.593.

    Article  PubMed  Google Scholar 

  3. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. POsttraumatic stress disorder in the national comorbidity survey. Arch Gen Psychiatry. 1995;52:1048–60. https://doi.org/10.1001/archpsyc.1995.03950240066012.

    Article  PubMed  Google Scholar 

  4. Tanielian TL, Jaycox L. Invisible wounds of war: psychological and cognitive injuries, their consequences, and services to assist recovery, vol. 1. Santa Monica: Rand Corporation; 2008.

    Google Scholar 

  5. Schlenger WE, et al. The prevalence of post-traumatic stress disorder in the Vietnam generation: a multimethod, multisource assessment of psychiatric disorder. J Trauma Stress. 1992;5:333–63. https://doi.org/10.1002/jts.2490050303.

    Article  Google Scholar 

  6. Galea S, et al. Trends of probable post-traumatic stress disorder in New York City after the September 11 terrorist attacks. Am J Epidemiol. 2003;158:514–24.

    Article  Google Scholar 

  7. Grieger TA, Fullerton CS, Ursano RJ. Posttraumatic stress disorder, alcohol use, and perceived safety after the terrorist attack on the pentagon. Psychiatr Serv. 2003;54:1380.

    Article  Google Scholar 

  8. Galea S, et al. Exposure to hurricane-related stressors and mental illness after Hurricane Katrina. Arch Gen Psychiatry. 2007;64:1427–34. https://doi.org/10.1001/archpsyc.64.12.1427.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singer MI, Anglin TM, Song LY, Lunghofer L. Adolescents’ exposure to violence and associated symptoms of psychological trauma. JAMA. 1995;273:477–82.

    Article  Google Scholar 

  10. Schwartz AC, Bradley RL, Sexton M, Sherry A, Ressler KJ. Posttraumatic stress disorder among African Americans in an inner city mental health clinic. Psychiatr Serv. 2005;56:212.

    Article  Google Scholar 

  11. Gillespie CF, et al. Trauma exposure and stress-related disorders in inner city primary care patients. Gen Hosp Psychiatry. 2009;31:505–14.

    Article  Google Scholar 

  12. Davidson JR, Stein DJ, Shalev AY, Yehuda R. Posttraumatic stress disorder: acquisition, recognition, course, and treatment. J Neuropsychiatry Clin Neurosci. 2004;16:135–47. https://doi.org/10.1176/jnp.16.2.135.

    Article  PubMed  Google Scholar 

  13. Breslau N. The epidemiology of posttraumatic stress disorder: what is the extent of the problem? J Clin Psychiatry. 2001;62(Suppl 17):16–22.

    PubMed  Google Scholar 

  14. Jovanovic T, Ressler KJ. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry. 2010;167:648–62.

    Article  Google Scholar 

  15. Rothbaum BO, et al. A pilot study of an exposure-based intervention in the ED designed to prevent posttraumatic stress disorder. Am J Emerg Med. 2008;26:326–30. https://doi.org/10.1016/j.ajem.2007.07.006.

    Article  PubMed  Google Scholar 

  16. LeDoux J. Emotional networks and motor control: a fearful view. Prog Brain Res. 1996;107:437–46.

    Article  Google Scholar 

  17. Gross CT, Canteras NS. The many paths to fear. Nat Rev Neurosci. 2012;13:651–8.

    Article  Google Scholar 

  18. Morrison FG, Ressler KJ. From the neurobiology of extinction to improved clinical treatments. Depress Anxiety. 2013;31:279. https://doi.org/10.1002/da.22214.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fanselow MS. Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci. 1980;15:177–82.

    PubMed  Google Scholar 

  20. Blanchard RJ, Blanchard DC. Crouching as an index of fear. J Comp Physiol Psychol. 1969;67:370–5. https://doi.org/10.1037/h0026779.

    Article  PubMed  Google Scholar 

  21. Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry. 2007;12:120–50. https://doi.org/10.1038/sj.mp.4001939.

    Article  PubMed  Google Scholar 

  22. Andero R, Dias BG, Ressler KJ. A role for Tac2, NkB, and Nk3 receptor in normal and dysregulated fear memory consolidation. Neuron. 2014;83:444. https://doi.org/10.1016/j.neuron.2014.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maren S, Holmes A. Stress and fear extinction. Neuropsychopharmacology. 2016;41:58–79. https://doi.org/10.1038/npp.2015.180.

    Article  PubMed  Google Scholar 

  24. Pare D, Quirk GJ, Ledoux JE. New vistas on amygdala networks in conditioned fear. J Neurophysiol. 2004;92:1–9. https://doi.org/10.1152/jn.00153.2004.

    Article  PubMed  Google Scholar 

  25. LeDoux J. The amygdala. Curr Biol. 2007;17:R868–74. https://doi.org/10.1016/j.cub.2007.08.005.

    Article  PubMed  Google Scholar 

  26. LeDoux JE. Coming to terms with fear. Proc Natl Acad Sci U S A. 2014;111:2871–8. https://doi.org/10.1073/pnas.1400335111.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 2010;90:419–63. https://doi.org/10.1152/physrev.00037.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Campeau S, Davis M. Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci. 1995;15:2301–11.

    Article  Google Scholar 

  29. Repa JC, et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci. 2001;4:724–31. https://doi.org/10.1038/89512.

    Article  PubMed  Google Scholar 

  30. Pitkanen A, Savander V, LeDoux JE. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 1997;20:517–23.

    Article  Google Scholar 

  31. Gentile CG, Jarrell TW, Teich A, McCabe PM, Schneiderman N. The role of amygdaloid central nucleus in the retention of differential pavlovian conditioning of bradycardia in rabbits. Behav Brain Res. 1986;20:263–73.

    Article  Google Scholar 

  32. LeDoux JE, Iwata J, Cicchetti P, Reis DJ. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci. 1988;8:2517–29.

    Article  Google Scholar 

  33. Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol. 1999;403:229–60.

    Article  Google Scholar 

  34. McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res. 2016;95:797. https://doi.org/10.1002/jnr.23709.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology. 2011;36:529–38. https://doi.org/10.1038/npp.2010.184.

    Article  PubMed  Google Scholar 

  36. Davis M. Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol. 2006;61:741–56. https://doi.org/10.1037/0003-066x.61.8.741.

    Article  PubMed  Google Scholar 

  37. Stuber GD, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature. 2011;475:377–80. https://doi.org/10.1038/nature10194.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ambroggi F, Ishikawa A, Fields HL, Nicola SM. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron. 2008;59:648–61. https://doi.org/10.1016/j.neuron.2008.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Di Ciano P, Everitt BJ. Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci. 2004;24:7167–73. https://doi.org/10.1523/jneurosci.1581-04.2004.

    Article  PubMed  Google Scholar 

  40. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Neuroscience. 2007;8:700–11. https://doi.org/10.1038/nrn2201.

    Article  PubMed  Google Scholar 

  41. Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69. https://doi.org/10.1146/annurev.physiol.66.082602.092845.

    Article  PubMed  Google Scholar 

  42. Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 2012;35:24–35. https://doi.org/10.1016/j.tins.2011.06.007.

    Article  PubMed  Google Scholar 

  43. Alvarez RP, Biggs A, Chen G, Pine DS, Grillon C. Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J Neurosci. 2008;28:6211–9. https://doi.org/10.1523/jneurosci.1246-08.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barrett J, Armony JL. Influence of trait anxiety on brain activity during the acquisition and extinction of aversive conditioning. Psychol Med. 2009;39:255–65. https://doi.org/10.1017/s0033291708003516.

    Article  PubMed  Google Scholar 

  45. Milad MR, et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62:446–54. https://doi.org/10.1016/j.biopsych.2006.10.011.

    Article  PubMed  Google Scholar 

  46. Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ. Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci. 2004;4:317–25.

    Article  Google Scholar 

  47. Critchley HD, Mathias CJ, Dolan RJ. Fear conditioning in humans: the influence of awareness and autonomic arousal on functional neuroanatomy. Neuron. 2002;33:653–63.

    Article  Google Scholar 

  48. Norrholm SD, et al. Baseline psychophysiological and cortisol reactivity as a predictor of PTSD treatment outcome in virtual reality exposure therapy. Behav Res Ther. 2016;82:28–37. https://doi.org/10.1016/j.brat.2016.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  49. van Well S, Visser RM, Scholte HS, Kindt M. Neural substrates of individual differences in human fear learning: evidence from concurrent fMRI, fear-potentiated startle, and US-expectancy data. Cogn Affect Behav Neurosci. 2012;12:499–512. https://doi.org/10.3758/s13415-012-0089-7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ma Q, Huang Y, Wang L. Left prefrontal activity reflects the ability of vicarious fear learning: a functional near-infrared spectroscopy study. Sci World J. 2013;2013:652542. https://doi.org/10.1155/2013/652542.

    Article  Google Scholar 

  51. Olsson A, Nearing KI, Phelps EA. Learning fears by observing others: the neural systems of social fear transmission. Soc Cogn Affect Neurosci. 2007;2:3–11. https://doi.org/10.1093/scan/nsm005.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thomas KM, et al. Amygdala response to fearful faces in anxious and depressed children. Arch Gen Psychiatry. 2001;58:1057–63.

    Article  Google Scholar 

  53. Stevens JS, et al. Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J Psychiatr Res. 2013;47:1469–78. https://doi.org/10.1016/j.jpsychires.2013.05.031.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Phan KL, et al. Activation of the medial prefrontal cortex and extended amygdala by individual ratings of emotional arousal: a fMRI study. Biol Psychiatry. 2003;53:211–5.

    Article  Google Scholar 

  55. Phillips ML, et al. Differential neural responses to overt and covert presentations of facial expressions of fear and disgust. NeuroImage. 2004;21:1484–96. https://doi.org/10.1016/j.neuroimage.2003.12.013.

    Article  PubMed  Google Scholar 

  56. Milad MR, et al. A role for the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry. 2007;62:1191–4. https://doi.org/10.1016/j.biopsych.2007.04.032.

    Article  PubMed  Google Scholar 

  57. Buchel C, Morris J, Dolan RJ, Friston KJ. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron. 1998;20:947–57.

    Article  Google Scholar 

  58. Marschner A, Kalisch R, Vervliet B, Vansteenwegen D, Buchel C. Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J Neurosci. 2008;28:9030–6. https://doi.org/10.1523/jneurosci.1651-08.2008.

    Article  PubMed  Google Scholar 

  59. Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron. 2004;43:897–905. https://doi.org/10.1016/j.neuron.2004.08.042.

    Article  PubMed  Google Scholar 

  60. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51. https://doi.org/10.1146/annurev.psych.121208.131631.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kalisch R, et al. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci. 2006;26:9503–11. https://doi.org/10.1523/jneurosci.2021-06.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lang S, et al. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex. Eur J Neurosci. 2009;29:823–32.

    Article  Google Scholar 

  63. Shin LM, et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry. 2004;61:168–76. https://doi.org/10.1001/archpsyc.61.2.168.

    Article  PubMed  Google Scholar 

  64. Morey RA, et al. The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder. J Psychiatr Res. 2009;43:809–17. https://doi.org/10.1016/j.jpsychires.2008.10.014.

    Article  PubMed  Google Scholar 

  65. Bryant RA, et al. Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biol Psychiatry. 2005;58:111–8. https://doi.org/10.1016/j.biopsych.2005.03.021.

    Article  PubMed  Google Scholar 

  66. Bryant RA, et al. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: an fMRI study. Hum Brain Mapp. 2008;29:517–23. https://doi.org/10.1002/hbm.20415.

    Article  PubMed  Google Scholar 

  67. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164:1476–88. https://doi.org/10.1176/appi.ajp.2007.07030504.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bremner JD, et al. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry. 2003;160:924–32. https://doi.org/10.1176/appi.ajp.160.5.924.

    Article  PubMed  Google Scholar 

  69. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91. https://doi.org/10.1038/npp.2009.83.

    Article  PubMed  Google Scholar 

  70. Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord. 2005;88:79–86. https://doi.org/10.1016/j.jad.2005.05.014.

    Article  PubMed  Google Scholar 

  71. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10:2897–902.

    Article  Google Scholar 

  72. O’Doherty DC, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res. 2015;232:1–33. https://doi.org/10.1016/j.pscychresns.2015.01.002.

    Article  PubMed  Google Scholar 

  73. Pare D, Duvarci S. Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol. 2012;22:717–23. https://doi.org/10.1016/j.conb.2012.02.014.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22:411–6. https://doi.org/10.1101/lm.037291.114.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van Rooij SJ, et al. Smaller hippocampal volume as a vulnerability factor for the persistence of post-traumatic stress disorder. Psychol Med. 2015;45:2737–46. https://doi.org/10.1017/s0033291715000707.

    Article  PubMed  Google Scholar 

  76. Kasai K, et al. Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry. 2008;63:550–6. https://doi.org/10.1016/j.biopsych.2007.06.022.

    Article  PubMed  Google Scholar 

  77. Carrion VG, Weems CF, Richert K, Hoffman BC, Reiss AL. Decreased prefrontal cortical volume associated with increased bedtime cortisol in traumatized youth. Biol Psychiatry. 2010;68:491–3. https://doi.org/10.1016/j.biopsych.2010.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Abe O, et al. Voxel-based diffusion tensor analysis reveals aberrant anterior cingulum integrity in posttraumatic stress disorder due to terrorism. Psychiatry Res. 2006;146:231–42. https://doi.org/10.1016/j.pscychresns.2006.01.004.

    Article  PubMed  Google Scholar 

  79. Thomaes K, et al. Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. J Clin Psychiatry. 2010;71:1636–44. https://doi.org/10.4088/JCP.08m04754blu.

    Article  PubMed  Google Scholar 

  80. Rogers MA, et al. Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Res. 2009;174:210–6. https://doi.org/10.1016/j.pscychresns.2009.06.001.

    Article  PubMed  Google Scholar 

  81. Pole N, et al. Prospective prediction of posttraumatic stress disorder symptoms using fear potentiated auditory startle responses. Biol Psychiatry. 2009;65:235–40. https://doi.org/10.1016/j.biopsych.2008.07.015.

    Article  PubMed  Google Scholar 

  82. Morey RA, et al. Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder. Transl Psychiatry. 2015;5:e700. https://doi.org/10.1038/tp.2015.196.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dickie EW, Brunet A, Akerib V, Armony JL. Neural correlates of recovery from post-traumatic stress disorder: a longitudinal fMRI investigation of memory encoding. Neuropsychologia. 2011;49:1771–8. https://doi.org/10.1016/j.neuropsychologia.2011.02.055.

    Article  PubMed  Google Scholar 

  84. Rubin M, et al. Greater hippocampal volume is associated with PTSD treatment response. Psychiatry Res. 2016;252:36–9. https://doi.org/10.1016/j.pscychresns.2016.05.001.

    Article  PubMed Central  Google Scholar 

  85. Norte CE, et al. They know their trauma by heart: an assessment of psychophysiological failure to recover in PTSD. J Affect Disord. 2013;150:136–41. https://doi.org/10.1016/j.jad.2012.11.039.

    Article  PubMed  Google Scholar 

  86. Robison-Andrew EJ, et al. Changes in trauma-potentiated startle with treatment of posttraumatic stress disorder in combat Veterans. J Anxiety Disord. 2014;28:358–62. https://doi.org/10.1016/j.janxdis.2014.04.002.

    Article  PubMed  Google Scholar 

  87. Bechara A. Risky business: emotion, decision-making, and addiction. J Gambl Stud. 2003;19:23–51.

    Article  Google Scholar 

  88. Reuter J, et al. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8:147–8. https://doi.org/10.1038/nn1378.

    Article  PubMed  Google Scholar 

  89. Verdejo-Garcia A, Bechara A. A somatic marker theory of addiction. Neuropharmacology. 2009;56(Suppl 1):48–62. https://doi.org/10.1016/j.neuropharm.2008.07.035.

    Article  PubMed  Google Scholar 

  90. Mayberg HS. Targeted electrode-based modulation of neural circuits for depression. J Clin Invest. 2009;119:717–25. https://doi.org/10.1172/JCI38454.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213:93–118. https://doi.org/10.1007/s00429-008-0189-x.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997;9:471–81. https://doi.org/10.1176/jnp.9.3.471.

    Article  PubMed  Google Scholar 

  93. de Kloet CS, et al. Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and non-pharmacological challenge tests, a review. J Psychiatr Res. 2006;40:550–67. https://doi.org/10.1016/j.jpsychires.2005.08.002.

    Article  PubMed  Google Scholar 

  94. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8:383–95.

    PubMed  PubMed Central  Google Scholar 

  95. Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984;5:25–44. https://doi.org/10.1210/edrv-5-1-25.

    Article  PubMed  Google Scholar 

  96. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev. 1996;17:245–61. https://doi.org/10.1210/edrv-17-3-245.

    Article  PubMed  Google Scholar 

  97. Yehuda R. Advances in understanding neuroendocrine alterations in PTSD and their therapeutic implications. Ann N Y Acad Sci. 2006;1071:137–66. https://doi.org/10.1196/annals.1364.012.

    Article  PubMed  Google Scholar 

  98. de Quervain DJ, Margraf J. Glucocorticoids for the treatment of post-traumatic stress disorder and phobias: a novel therapeutic approach. Eur J Pharmacol. 2008;583:365–71. https://doi.org/10.1016/j.ejphar.2007.11.068.

    Article  PubMed  Google Scholar 

  99. Meewisse ML, Reitsma JB, de Vries GJ, Gersons BP, Olff M. Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br J Psychiatry. 2007;191:387–92. https://doi.org/10.1192/bjp.bp.106.024877.

    Article  PubMed  Google Scholar 

  100. Sherin JE, Nemeroff CB. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci. 2011;13:263–78.

    PubMed  PubMed Central  Google Scholar 

  101. Kartha A, et al. The impact of trauma exposure and post-traumatic stress disorder on healthcare utilization among primary care patients. Med Care. 2008;46:388–93. https://doi.org/10.1097/MLR.0b013e31815dc5d2.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Arnow BA. Relationships between childhood maltreatment, adult health and psychiatric outcomes, and medical utilization. J Clin Psychiatry. 2004;65(Suppl 12):10–5.

    PubMed  Google Scholar 

  103. Madakasira S, O’Brien KF. Acute posttraumatic stress disorder in victims of a natural disaster. J Nerv Ment Dis. 1987;175:286–90.

    Article  Google Scholar 

  104. Cao H, McFarlane CA, Klimidis S. Prevalence of psychiatric disorder following the 1988 Yun Nan (China) earthquake. Soc Psychiatry Psychiatr Epidemiol. 2003;38:204–12. https://doi.org/10.1007/s00127-003-0619-2.

    Article  PubMed  Google Scholar 

  105. Thompson MP, Norris FH, Hanacek B. Age differences in the psychological consequences of Hurricane Hugo. Psychol Aging. 1993;8:606–16.

    Article  Google Scholar 

  106. North CS, et al. Psychiatric disorders among survivors of the Oklahoma City bombing. JAMA. 1999;282:755–62.

    Article  Google Scholar 

  107. North CS, et al. The postdisaster prevalence of major depression relative to PTSD in survivors of the 9/11 attacks on the World Trade Center selected from affected workplaces. Compr Psychiatry. 2015;60:119–25. https://doi.org/10.1016/j.comppsych.2015.02.009.

    Article  PubMed  Google Scholar 

  108. Zhang G, et al. Psychiatric disorders after terrorist bombings among rescue workers and bombing survivors in Nairobi and rescue workers in Oklahoma City. Ann Clin Psychiatry. 2016;28:22–30.

    PubMed  Google Scholar 

  109. Grieger TA, Waldrep DA, Lovasz MM, Ursano RJ. Follow-up of Pentagon employees two years after the terrorist attack of September 11, 2001. Psychiatr Serv. 2005;56:1374–8. https://doi.org/10.1176/appi.ps.56.11.1374.

    Article  PubMed  Google Scholar 

  110. Liu B, Tarigan LH, Bromet EJ, Kim H. World Trade Center disaster exposure-related probable posttraumatic stress disorder among responders and civilians: a meta-analysis. PLoS One. 2014;9:e101491. https://doi.org/10.1371/journal.pone.0101491.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bell CC, Jenkins EJ. Community violence and children on Chicago’s southside. Psychiatry. 1993;56:46–54.

    Article  Google Scholar 

  112. Campbell C, Schwarz DF. Prevalence and impact of exposure to interpersonal violence among suburban and urban middle school students. Pediatrics. 1996;98:396–402.

    Article  Google Scholar 

  113. Gladstein J, Rusonis EJ, Heald FP. A comparison of inner-city and upper-middle class youths’ exposure to violence. J Adolesc Health. 1992;13:275–80.

    Article  Google Scholar 

  114. Fitzpatrick KM, Boldizar JP. The prevalence and consequences of exposure to violence among African-American youth. J Am Acad Child Adolesc Psychiatry. 1993;32:424–30. https://doi.org/10.1097/00004583-199303000-00026.

    Article  PubMed  Google Scholar 

  115. Alim TN, et al. Trauma exposure, posttraumatic stress disorder and depression in an African-American primary care population. J Natl Med Assoc. 2006;98:1630–6.

    PubMed  PubMed Central  Google Scholar 

  116. Schneider R, Baumrind N, Kimerling R. Exposure to child abuse and risk for mental health problems in women. Violence Vict. 2007;22:620–31.

    Article  Google Scholar 

  117. Breslau N, et al. Trauma and posttraumatic stress disorder in the community: the 1996 detroit area survey of trauma. Arch Gen Psychiatry. 1998;55:626–32. https://doi.org/10.1001/archpsyc.55.7.626.

    Article  PubMed  Google Scholar 

  118. Pfaff JF. The empirics of prison growth: a critical review and path forward. J Crim Law Criminol. 2008;98:547–619.

    Google Scholar 

  119. Austin J, McVey AD. The impact of the war on drugs. 1989.

    Google Scholar 

  120. Greenberg DF, West V. State prison populations and their growth, 1971–1991. Criminology. 2001;39:615–54.

    Article  Google Scholar 

  121. Gillespie CF, Phifer J, Bradley B, Ressler KJ. Risk and resilience: genetic and environmental influences on development of the stress response. Depress Anxiety. 2009;26:984–92. https://doi.org/10.1002/da.20605.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dean G, Kilpatrick PD, et al. The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. Am J Psychiatr. 2007;164:1693–9. https://doi.org/10.1176/appi.ajp.2007.06122007.

    Article  Google Scholar 

  123. Robinaugh DJ, et al. Understanding the relationship of perceived social support to post-trauma cognitions and posttraumatic stress disorder. J Anxiety Disord. 2011;25:1072–8.

    Article  Google Scholar 

  124. Dai W, et al. Association between social support and recovery from post-traumatic stress disorder after flood: a 13–14 year follow-up study in Hunan, China. BMC Public Health. 2016;16:194.

    Article  Google Scholar 

  125. Coker AL, et al. Social support protects against the negative effects of partner violence on mental health. J Womens Health Gend Based Med. 2002;11:465–76. https://doi.org/10.1089/15246090260137644.

    Article  PubMed  Google Scholar 

  126. Brewin CR, Andrews B, Valentine JD. Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. J Consult Clin Psychol. 2000;68:748–66.

    Article  Google Scholar 

  127. Ozer EJ, Best SR, Lipsey TL, Weiss DS. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull. 2003;129:52–73.

    Article  Google Scholar 

  128. Cutrona CE, Russell DW, Hessling RM, Brown PA, Murry V. Direct and moderating effects of community context on the psychological well-being of African American women. J Pers Soc Psychol. 2000;79:1088–101.

    Article  Google Scholar 

  129. Obasaju MA, Palin FL, Jacobs C, Anderson P, Kaslow NJ. Won’t you be my neighbor? Using an ecological approach to examine the impact of community on revictimization. J Interpers Violence. 2009;24:38–53. https://doi.org/10.1177/0886260508314933.

    Article  PubMed  Google Scholar 

  130. Sampson RJ, Raudenbush SW, Earls F. Neighborhoods and violent crime: a multilevel study of collective efficacy. Science. 1997;277:918–24.

    Article  Google Scholar 

  131. Gapen M, et al. Perceived neighborhood disorder, community cohesion, and PTSD symptoms among low-income African Americans in an urban health setting. Am J Orthopsychiatry. 2011;81:31–7. https://doi.org/10.1111/j.1939-0025.2010.01069.x.

    Article  PubMed  Google Scholar 

  132. Johns LE, et al. Neighborhood social cohesion and posttraumatic stress disorder in a community-based sample: findings from the Detroit Neighborhood Health Study. Soc Psychiatry Psychiatr Epidemiol. 2012;47:1899–906. https://doi.org/10.1007/s00127-012-0506-9.

    Article  PubMed  PubMed Central  Google Scholar 

  133. McFall M, Fontana A, Raskind M, Rosenheck R. Analysis of violent behavior in Vietnam combat veteran psychiatric inpatients with posttraumatic stress disorder. J Trauma Stress. 1999;12:501–17. https://doi.org/10.1023/a:1024771121189.

    Article  PubMed  Google Scholar 

  134. Elbogen EB, Beckham JC, Butterfield MI, Swartz M, Swanson J. Assessing risk of violent behavior among veterans with severe mental illness. J Trauma Stress. 2008;21:113–7. https://doi.org/10.1002/jts.20283.

    Article  PubMed  Google Scholar 

  135. Glenn DM, et al. Violence and hostility among families of Vietnam veterans with combat-related posttraumatic stress disorder. Violence Vict. 2002;17:473–89.

    Article  Google Scholar 

  136. Haller M, Chassin L. Risk pathways among traumatic stress, posttraumatic stress disorder symptoms, and alcohol and drug problems: a test of four hypotheses. Psychol Addict Behav. 2014;28:841–51. https://doi.org/10.1037/a0035878.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fetzner MG, Abrams MP, Asmundson GJ. Symptoms of posttraumatic stress disorder and depression in relation to alcohol-use and alcohol-related problems among Canadian forces veterans. Can J Psychiatr. 2013;58:417–25.

    Article  Google Scholar 

  138. Taft CT, et al. Posttraumatic stress disorder symptoms, physiological reactivity, alcohol problems, and aggression among military veterans. J Abnorm Psychol. 2007;116:498–507. https://doi.org/10.1037/0021-843x.116.3.498.

    Article  PubMed  Google Scholar 

  139. Donley S, et al. Civilian PTSD symptoms and risk for involvement in the criminal justice system. J Am Acad Psychiatry Law. 2012;40:522–9.

    PubMed  PubMed Central  Google Scholar 

  140. Lundholm L, Haggard U, Moller J, Hallqvist J, Thiblin I. The triggering effect of alcohol and illicit drugs on violent crime in a remand prison population: a case crossover study. Drug Alcohol Depend. 2013;129:110–5. https://doi.org/10.1016/j.drugalcdep.2012.09.019.

    Article  PubMed  Google Scholar 

  141. Khoury L, Tang YL, Bradley B, Cubells JF, Ressler KJ. Substance use, childhood traumatic experience, and posttraumatic stress disorder in an urban civilian population. Depress Anxiety. 2010;27:1077–86. https://doi.org/10.1002/da.20751.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dube SR, Anda RF, Felitti VJ, Edwards VJ, Croft JB. Adverse childhood experiences and personal alcohol abuse as an adult. Addict Behav. 2002;27:713–25.

    Article  Google Scholar 

  143. Neigh GN, Gillespie CF, Nemeroff CB. The neurobiological toll of child abuse and neglect. Trauma Violence Abuse. 2009;10:389–410. https://doi.org/10.1177/1524838009339758.

    Article  PubMed  Google Scholar 

  144. Kingston S, Raghavan C. The relationship of sexual abuse, early initiation of substance use, and adolescent trauma to PTSD. J Trauma Stress. 2009;22:65–8. https://doi.org/10.1002/jts.20381.

    Article  PubMed  Google Scholar 

  145. Galovski T, Lyons JA. Psychological sequelae of combat violence: a review of the impact of PTSD on the veteran’s family and possible interventions. Aggress Violent Behav. 2004;9:477–501.

    Article  Google Scholar 

  146. Saxon AJ, et al. Trauma, symptoms of posttraumatic stress disorder, and associated problems among incarcerated veterans. Psychiatr Serv. 2001;52:959–64. https://doi.org/10.1176/appi.ps.52.7.959.

    Article  PubMed  Google Scholar 

  147. Gendreau P, Goggin C, Smith P. Generating rational correctional policies: an introduction to advances in cumulating knowledge. Correct Manag Q. 2000;4:52–60.

    Google Scholar 

  148. Gendreau P, Cullen FT, Goggin C. The effects of prison sentences on recidivism. Solicitor General Canada Ottawa, 1999.

    Google Scholar 

  149. Wolff N, Blitz CL, Shi J, Bachman R, Siegel JA. Sexual violence inside prisons: rates of victimization. J Urban Health. 2006;83:835–48.

    Article  Google Scholar 

  150. Blitz CL, Wolff N, Shi J. Physical victimization in prison: the role of mental illness. Int J Law Psychiatry. 2008;31:385–93.

    Article  Google Scholar 

  151. Wooldredge JD. Inmate crime and victimization in a southwestern correctional facility. J Crim Just. 1994;22:367–81.

    Article  Google Scholar 

  152. Golembeski C, Fullilove R. Criminal (in)justice in the city and its associated health consequences. Am J Public Health. 2005;95:1701–6.

    Article  Google Scholar 

  153. Wang EA, et al. Incarceration, incident hypertension, and access to healthcare: findings from the coronary artery risk development in young adults (CARDIA) study. Arch Intern Med. 2009;169:687–93.

    Article  Google Scholar 

  154. Parsons RG, Ressler KJ. Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci. 2013;16:146–53. https://doi.org/10.1038/nn.3296.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci. 2009;10:446–57. https://doi.org/10.1038/nrn2649.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Southwick SM, Vythilingam M, Charney DS. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol. 2005;1:255–91. https://doi.org/10.1146/annurev.clinpsy.1.102803.143948.

    Article  PubMed  Google Scholar 

  157. Alim TN, et al. Trauma, resilience, and recovery in a high-risk African-American population. Am J Psychiatry. 2008;165:1566–75. https://doi.org/10.1176/appi.ajp.2008.07121939.

    Article  PubMed  Google Scholar 

  158. Wingo AP, Ressler KJ, Bradley B. Resilience characteristics mitigate tendency for harmful alcohol and illicit drug use in adults with a history of childhood abuse: a cross-sectional study of 2024 inner-city men and women. J Psychiatr Res. 2014;51:93–9.

    Article  Google Scholar 

  159. Campbell-Sills L, Stein MB. Psychometric analysis and refinement of the Connor-Davidson resilience scale (CD-RISC): validation of a 10-item measure of resilience. J Trauma Stress. 2007;20:1019–28. https://doi.org/10.1002/jts.20271.

    Article  PubMed  Google Scholar 

  160. Connor KM, Davidson JR. Development of a new resilience scale: the Connor-Davidson resilience scale (CD-RISC). Depress Anxiety. 2003;18:76–82. https://doi.org/10.1002/da.10113.

    Article  PubMed  Google Scholar 

  161. Heim C, Shugart M, Craighead WE, Nemeroff CB. Neurobiological and psychiatric consequences of child abuse and neglect. Dev Psychobiol. 2010;52:671–90. https://doi.org/10.1002/dev.20494.

    Article  PubMed  Google Scholar 

  162. Yehuda R, Halligan SL, Bierer LM. Relationship of parental trauma exposure and PTSD to PTSD, depressive and anxiety disorders in offspring. J Psychiatr Res. 2001;35:261–70.

    Article  Google Scholar 

  163. Grillon C, et al. Families at high and low risk for depression: a three-generation startle study. Biol Psychiatry. 2005;57:953–60. https://doi.org/10.1016/j.biopsych.2005.01.045.

    Article  PubMed  Google Scholar 

  164. Yehuda R, Bierer LM. Transgenerational transmission of cortisol and PTSD risk. Prog Brain Res. 2008;167:121–35. https://doi.org/10.1016/s0079-6123(07)67009-5.

    Article  Google Scholar 

  165. Jovanovic T, et al. Childhood abuse is associated with increased startle reactivity in adulthood. Depress Anxiety. 2009;26:1018–26.

    Article  Google Scholar 

  166. Jovanovic T, et al. Physiological markers of anxiety are increased in children of abused mothers. J Child Psychol Psychiatry. 2011;52:844–52. https://doi.org/10.1111/j.1469-7610.2011.02410.x.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Stein MB, Jang KL, Taylor S, Vernon PA, Livesley WJ. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am J Psychiatry. 2002;159:1675–81. https://doi.org/10.1176/appi.ajp.159.10.1675.

    Article  PubMed  Google Scholar 

  168. True WR, et al. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Arch Gen Psychiatry. 1993;50:257–64.

    Article  Google Scholar 

  169. Sharma S, Powers A, Bradley B, Ressler KJ. Gene x environment determinants of stress- and anxiety-related disorders. Annu Rev Psychol. 2016;67:239–61. https://doi.org/10.1146/annurev-psych-122414-033408.

    Article  PubMed  Google Scholar 

  170. Antonini A, Stryker MP. Rapid remodeling of axonal arbors in the visual cortex. Science. 1993;260:1819–21.

    Article  Google Scholar 

  171. Werker JF, Hensch TK. Critical periods in speech perception: new directions. Annu Rev Psychol. 2015;66:173–96. https://doi.org/10.1146/annurev-psych-010814-015104.

    Article  PubMed  Google Scholar 

  172. Sullivan RM, Landers M, Yeaman B, Wilson DA. Neurophysiology: good memories of bad events in infancy. Nature. 2000;407:38–9.

    Article  Google Scholar 

  173. Moriceau S, Wilson DA, Levine S, Sullivan RM. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci. 2006;26:6737–48. https://doi.org/10.1523/jneurosci.0499-06.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sullivan R, The M. Neurobiology of attachment to nurturing and abusive caregivers. Hastings Law J. 2012;63:1553–70.

    PubMed  PubMed Central  Google Scholar 

  175. Roth TL, et al. Neurobiology of secure infant attachment and attachment despite adversity: a mouse model. Genes Brain Behav. 2013;12:673–80. https://doi.org/10.1111/gbb.12067.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Moriceau S, Shionoya K, Jakubs K, Sullivan RM. Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci. 2009;29:15745–55. https://doi.org/10.1523/jneurosci.4106-09.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Moriceau S, Roth TL, Sullivan RM. Rodent model of infant attachment learning and stress. Dev Psychobiol. 2010;52:651–60. https://doi.org/10.1002/dev.20482.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sarro EC, Wilson DA, Sullivan RM. Maternal regulation of infant brain state. Curr Biol. 2014;24:1664–9. https://doi.org/10.1016/j.cub.2014.06.017.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Barbas H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull. 2000;52:319–30.

    Article  Google Scholar 

  180. Croxson PL, et al. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci. 2005;25:8854–66. https://doi.org/10.1523/jneurosci.1311-05.2005.

    Article  PubMed  Google Scholar 

  181. Preuss TM, Goldman-Rakic PS. Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J Comp Neurol. 1991;310:507–49. https://doi.org/10.1002/cne.903100404.

    Article  PubMed  Google Scholar 

  182. Preuss TM. Do rats have prefrontal cortex? The rose-Woolsey-Akert program reconsidered. J Cogn Neurosci. 1995;7:1–24. https://doi.org/10.1162/jocn.1995.7.1.1.

    Article  PubMed  Google Scholar 

  183. Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206–19.

    Article  Google Scholar 

  184. Seay B, Gottfried NW. A phylogenetic perspective for social behavior in primates. J Gen Psychol. 1975;92:5–17. https://doi.org/10.1080/00221309.1975.9711323.

    Article  PubMed  Google Scholar 

  185. Suomi SJ, Harlow HF, Kimball SD. Behavioral effects of prolonged partial social isolation in the rhesus monkey. Psychol Rep. 1971;29:1171–7. https://doi.org/10.2466/pr0.1971.29.3f.1171.

    Article  PubMed  Google Scholar 

  186. Sanchez MM, et al. Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biol Psychiatry. 2005;57:373–81. https://doi.org/10.1016/j.biopsych.2004.11.032.

    Article  PubMed  Google Scholar 

  187. Sanchez MM, Ladd CO, Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol. 2001;13:419–49.

    Article  Google Scholar 

  188. Tottenham N, et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci. 2010;13:46–61. https://doi.org/10.1111/j.1467-7687.2009.00852.x.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fareri DS, Tottenham N. Effects of early life stress on amygdala and striatal development. Dev Cogn Neurosci. 2016;19:233–47. https://doi.org/10.1016/j.dcn.2016.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lupien SJ, et al. Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci U S A. 2011;108:14324–9. https://doi.org/10.1073/pnas.1105371108.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Callaghan BL, Sullivan RM, Howell B, Tottenham N. The international society for developmental psychobiology Sackler symposium: early adversity and the maturation of emotion circuits--a cross-species analysis. Dev Psychobiol. 2014;56:1635–50. https://doi.org/10.1002/dev.21260.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Davies TH, Ning YM, Sanchez ER. A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem. 2002;277:4597–600. https://doi.org/10.1074/jbc.C100531200.

    Article  PubMed  Google Scholar 

  193. Wochnik GM, et al. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem. 2005;280:4609–16. https://doi.org/10.1074/jbc.M407498200.

    Article  PubMed  Google Scholar 

  194. Binder EB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299:1291–305.

    Article  Google Scholar 

  195. Xie P, et al. Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology. 2010;35:1684–92.

    Article  Google Scholar 

  196. Klengel T, Binder EB. FKBP5 allele-specific epigenetic modification in gene by environment interaction. Neuropsychopharmacology. 2015;40:244–6.

    Article  Google Scholar 

  197. Klengel T, Binder EB. Epigenetics of stress-related psychiatric disorders and gene X environment interactions. Neuron. 2015;86:1343–57. https://doi.org/10.1016/j.neuron.2015.05.036.

    Article  PubMed  Google Scholar 

  198. Sabbagh JJ, et al. Age-associated epigenetic upregulation of the FKBP5 gene selectively impairs stress resiliency. PLoS One. 2014;9:e107241. https://doi.org/10.1371/journal.pone.0107241.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Klengel T, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:33–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Ressler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCullough, K.M., Ressler, K.J. (2018). Posttraumatic Stress Disorder: From Neurobiology to Cycles of Violence. In: Fogler, J., Phelps, R. (eds) Trauma, Autism, and Neurodevelopmental Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-00503-0_3

Download citation

Publish with us

Policies and ethics